|
a |
|
b/utils/torch_utils.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
PyTorch utils |
|
|
4 |
""" |
|
|
5 |
|
|
|
6 |
import math |
|
|
7 |
import os |
|
|
8 |
import platform |
|
|
9 |
import subprocess |
|
|
10 |
import time |
|
|
11 |
import warnings |
|
|
12 |
from contextlib import contextmanager |
|
|
13 |
from copy import deepcopy |
|
|
14 |
from pathlib import Path |
|
|
15 |
|
|
|
16 |
import torch |
|
|
17 |
import torch.distributed as dist |
|
|
18 |
import torch.nn as nn |
|
|
19 |
import torch.nn.functional as F |
|
|
20 |
from torch.nn.parallel import DistributedDataParallel as DDP |
|
|
21 |
|
|
|
22 |
from utils.general import LOGGER, check_version, colorstr, file_date, git_describe |
|
|
23 |
|
|
|
24 |
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html |
|
|
25 |
RANK = int(os.getenv('RANK', -1)) |
|
|
26 |
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) |
|
|
27 |
|
|
|
28 |
try: |
|
|
29 |
import thop # for FLOPs computation |
|
|
30 |
except ImportError: |
|
|
31 |
thop = None |
|
|
32 |
|
|
|
33 |
# Suppress PyTorch warnings |
|
|
34 |
warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling') |
|
|
35 |
warnings.filterwarnings('ignore', category=UserWarning) |
|
|
36 |
|
|
|
37 |
|
|
|
38 |
def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')): |
|
|
39 |
# Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator |
|
|
40 |
def decorate(fn): |
|
|
41 |
return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn) |
|
|
42 |
|
|
|
43 |
return decorate |
|
|
44 |
|
|
|
45 |
|
|
|
46 |
def smartCrossEntropyLoss(label_smoothing=0.0): |
|
|
47 |
# Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0 |
|
|
48 |
if check_version(torch.__version__, '1.10.0'): |
|
|
49 |
return nn.CrossEntropyLoss(label_smoothing=label_smoothing) |
|
|
50 |
if label_smoothing > 0: |
|
|
51 |
LOGGER.warning(f'WARNING ⚠️ label smoothing {label_smoothing} requires torch>=1.10.0') |
|
|
52 |
return nn.CrossEntropyLoss() |
|
|
53 |
|
|
|
54 |
|
|
|
55 |
def smart_DDP(model): |
|
|
56 |
# Model DDP creation with checks |
|
|
57 |
assert not check_version(torch.__version__, '1.12.0', pinned=True), \ |
|
|
58 |
'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \ |
|
|
59 |
'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395' |
|
|
60 |
if check_version(torch.__version__, '1.11.0'): |
|
|
61 |
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True) |
|
|
62 |
else: |
|
|
63 |
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) |
|
|
64 |
|
|
|
65 |
|
|
|
66 |
def reshape_classifier_output(model, n=1000): |
|
|
67 |
# Update a TorchVision classification model to class count 'n' if required |
|
|
68 |
from models.common import Classify |
|
|
69 |
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module |
|
|
70 |
if isinstance(m, Classify): # YOLOv5 Classify() head |
|
|
71 |
if m.linear.out_features != n: |
|
|
72 |
m.linear = nn.Linear(m.linear.in_features, n) |
|
|
73 |
elif isinstance(m, nn.Linear): # ResNet, EfficientNet |
|
|
74 |
if m.out_features != n: |
|
|
75 |
setattr(model, name, nn.Linear(m.in_features, n)) |
|
|
76 |
elif isinstance(m, nn.Sequential): |
|
|
77 |
types = [type(x) for x in m] |
|
|
78 |
if nn.Linear in types: |
|
|
79 |
i = types.index(nn.Linear) # nn.Linear index |
|
|
80 |
if m[i].out_features != n: |
|
|
81 |
m[i] = nn.Linear(m[i].in_features, n) |
|
|
82 |
elif nn.Conv2d in types: |
|
|
83 |
i = types.index(nn.Conv2d) # nn.Conv2d index |
|
|
84 |
if m[i].out_channels != n: |
|
|
85 |
m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None) |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
@contextmanager |
|
|
89 |
def torch_distributed_zero_first(local_rank: int): |
|
|
90 |
# Decorator to make all processes in distributed training wait for each local_master to do something |
|
|
91 |
if local_rank not in [-1, 0]: |
|
|
92 |
dist.barrier(device_ids=[local_rank]) |
|
|
93 |
yield |
|
|
94 |
if local_rank == 0: |
|
|
95 |
dist.barrier(device_ids=[0]) |
|
|
96 |
|
|
|
97 |
|
|
|
98 |
def device_count(): |
|
|
99 |
# Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows |
|
|
100 |
assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows' |
|
|
101 |
try: |
|
|
102 |
cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows |
|
|
103 |
return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]) |
|
|
104 |
except Exception: |
|
|
105 |
return 0 |
|
|
106 |
|
|
|
107 |
|
|
|
108 |
def select_device(device='', batch_size=0, newline=True): |
|
|
109 |
# device = None or 'cpu' or 0 or '0' or '0,1,2,3' |
|
|
110 |
s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} ' |
|
|
111 |
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0' |
|
|
112 |
cpu = device == 'cpu' |
|
|
113 |
mps = device == 'mps' # Apple Metal Performance Shaders (MPS) |
|
|
114 |
if cpu or mps: |
|
|
115 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False |
|
|
116 |
elif device: # non-cpu device requested |
|
|
117 |
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available() |
|
|
118 |
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \ |
|
|
119 |
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)" |
|
|
120 |
|
|
|
121 |
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available |
|
|
122 |
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7 |
|
|
123 |
n = len(devices) # device count |
|
|
124 |
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count |
|
|
125 |
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' |
|
|
126 |
space = ' ' * (len(s) + 1) |
|
|
127 |
for i, d in enumerate(devices): |
|
|
128 |
p = torch.cuda.get_device_properties(i) |
|
|
129 |
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB |
|
|
130 |
arg = 'cuda:0' |
|
|
131 |
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available |
|
|
132 |
s += 'MPS\n' |
|
|
133 |
arg = 'mps' |
|
|
134 |
else: # revert to CPU |
|
|
135 |
s += 'CPU\n' |
|
|
136 |
arg = 'cpu' |
|
|
137 |
|
|
|
138 |
if not newline: |
|
|
139 |
s = s.rstrip() |
|
|
140 |
LOGGER.info(s) |
|
|
141 |
return torch.device(arg) |
|
|
142 |
|
|
|
143 |
|
|
|
144 |
def time_sync(): |
|
|
145 |
# PyTorch-accurate time |
|
|
146 |
if torch.cuda.is_available(): |
|
|
147 |
torch.cuda.synchronize() |
|
|
148 |
return time.time() |
|
|
149 |
|
|
|
150 |
|
|
|
151 |
def profile(input, ops, n=10, device=None): |
|
|
152 |
""" YOLOv5 speed/memory/FLOPs profiler |
|
|
153 |
Usage: |
|
|
154 |
input = torch.randn(16, 3, 640, 640) |
|
|
155 |
m1 = lambda x: x * torch.sigmoid(x) |
|
|
156 |
m2 = nn.SiLU() |
|
|
157 |
profile(input, [m1, m2], n=100) # profile over 100 iterations |
|
|
158 |
""" |
|
|
159 |
results = [] |
|
|
160 |
if not isinstance(device, torch.device): |
|
|
161 |
device = select_device(device) |
|
|
162 |
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" |
|
|
163 |
f"{'input':>24s}{'output':>24s}") |
|
|
164 |
|
|
|
165 |
for x in input if isinstance(input, list) else [input]: |
|
|
166 |
x = x.to(device) |
|
|
167 |
x.requires_grad = True |
|
|
168 |
for m in ops if isinstance(ops, list) else [ops]: |
|
|
169 |
m = m.to(device) if hasattr(m, 'to') else m # device |
|
|
170 |
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m |
|
|
171 |
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward |
|
|
172 |
try: |
|
|
173 |
flops = thop.profile(m, inputs=(x, ), verbose=False)[0] / 1E9 * 2 # GFLOPs |
|
|
174 |
except Exception: |
|
|
175 |
flops = 0 |
|
|
176 |
|
|
|
177 |
try: |
|
|
178 |
for _ in range(n): |
|
|
179 |
t[0] = time_sync() |
|
|
180 |
y = m(x) |
|
|
181 |
t[1] = time_sync() |
|
|
182 |
try: |
|
|
183 |
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward() |
|
|
184 |
t[2] = time_sync() |
|
|
185 |
except Exception: # no backward method |
|
|
186 |
# print(e) # for debug |
|
|
187 |
t[2] = float('nan') |
|
|
188 |
tf += (t[1] - t[0]) * 1000 / n # ms per op forward |
|
|
189 |
tb += (t[2] - t[1]) * 1000 / n # ms per op backward |
|
|
190 |
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB) |
|
|
191 |
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes |
|
|
192 |
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters |
|
|
193 |
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') |
|
|
194 |
results.append([p, flops, mem, tf, tb, s_in, s_out]) |
|
|
195 |
except Exception as e: |
|
|
196 |
print(e) |
|
|
197 |
results.append(None) |
|
|
198 |
torch.cuda.empty_cache() |
|
|
199 |
return results |
|
|
200 |
|
|
|
201 |
|
|
|
202 |
def is_parallel(model): |
|
|
203 |
# Returns True if model is of type DP or DDP |
|
|
204 |
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) |
|
|
205 |
|
|
|
206 |
|
|
|
207 |
def de_parallel(model): |
|
|
208 |
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP |
|
|
209 |
return model.module if is_parallel(model) else model |
|
|
210 |
|
|
|
211 |
|
|
|
212 |
def initialize_weights(model): |
|
|
213 |
for m in model.modules(): |
|
|
214 |
t = type(m) |
|
|
215 |
if t is nn.Conv2d: |
|
|
216 |
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
|
217 |
elif t is nn.BatchNorm2d: |
|
|
218 |
m.eps = 1e-3 |
|
|
219 |
m.momentum = 0.03 |
|
|
220 |
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: |
|
|
221 |
m.inplace = True |
|
|
222 |
|
|
|
223 |
|
|
|
224 |
def find_modules(model, mclass=nn.Conv2d): |
|
|
225 |
# Finds layer indices matching module class 'mclass' |
|
|
226 |
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] |
|
|
227 |
|
|
|
228 |
|
|
|
229 |
def sparsity(model): |
|
|
230 |
# Return global model sparsity |
|
|
231 |
a, b = 0, 0 |
|
|
232 |
for p in model.parameters(): |
|
|
233 |
a += p.numel() |
|
|
234 |
b += (p == 0).sum() |
|
|
235 |
return b / a |
|
|
236 |
|
|
|
237 |
|
|
|
238 |
def prune(model, amount=0.3): |
|
|
239 |
# Prune model to requested global sparsity |
|
|
240 |
import torch.nn.utils.prune as prune |
|
|
241 |
for name, m in model.named_modules(): |
|
|
242 |
if isinstance(m, nn.Conv2d): |
|
|
243 |
prune.l1_unstructured(m, name='weight', amount=amount) # prune |
|
|
244 |
prune.remove(m, 'weight') # make permanent |
|
|
245 |
LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity') |
|
|
246 |
|
|
|
247 |
|
|
|
248 |
def fuse_conv_and_bn(conv, bn): |
|
|
249 |
# Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ |
|
|
250 |
fusedconv = nn.Conv2d(conv.in_channels, |
|
|
251 |
conv.out_channels, |
|
|
252 |
kernel_size=conv.kernel_size, |
|
|
253 |
stride=conv.stride, |
|
|
254 |
padding=conv.padding, |
|
|
255 |
dilation=conv.dilation, |
|
|
256 |
groups=conv.groups, |
|
|
257 |
bias=True).requires_grad_(False).to(conv.weight.device) |
|
|
258 |
|
|
|
259 |
# Prepare filters |
|
|
260 |
w_conv = conv.weight.clone().view(conv.out_channels, -1) |
|
|
261 |
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) |
|
|
262 |
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) |
|
|
263 |
|
|
|
264 |
# Prepare spatial bias |
|
|
265 |
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias |
|
|
266 |
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) |
|
|
267 |
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) |
|
|
268 |
|
|
|
269 |
return fusedconv |
|
|
270 |
|
|
|
271 |
|
|
|
272 |
def model_info(model, verbose=False, imgsz=640): |
|
|
273 |
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] |
|
|
274 |
n_p = sum(x.numel() for x in model.parameters()) # number parameters |
|
|
275 |
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients |
|
|
276 |
if verbose: |
|
|
277 |
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}") |
|
|
278 |
for i, (name, p) in enumerate(model.named_parameters()): |
|
|
279 |
name = name.replace('module_list.', '') |
|
|
280 |
print('%5g %40s %9s %12g %20s %10.3g %10.3g' % |
|
|
281 |
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) |
|
|
282 |
|
|
|
283 |
try: # FLOPs |
|
|
284 |
p = next(model.parameters()) |
|
|
285 |
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride |
|
|
286 |
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format |
|
|
287 |
flops = thop.profile(deepcopy(model), inputs=(im, ), verbose=False)[0] / 1E9 * 2 # stride GFLOPs |
|
|
288 |
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float |
|
|
289 |
fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs' # 640x640 GFLOPs |
|
|
290 |
except Exception: |
|
|
291 |
fs = '' |
|
|
292 |
|
|
|
293 |
name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model' |
|
|
294 |
LOGGER.info(f'{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}') |
|
|
295 |
|
|
|
296 |
|
|
|
297 |
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) |
|
|
298 |
# Scales img(bs,3,y,x) by ratio constrained to gs-multiple |
|
|
299 |
if ratio == 1.0: |
|
|
300 |
return img |
|
|
301 |
h, w = img.shape[2:] |
|
|
302 |
s = (int(h * ratio), int(w * ratio)) # new size |
|
|
303 |
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize |
|
|
304 |
if not same_shape: # pad/crop img |
|
|
305 |
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) |
|
|
306 |
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean |
|
|
307 |
|
|
|
308 |
|
|
|
309 |
def copy_attr(a, b, include=(), exclude=()): |
|
|
310 |
# Copy attributes from b to a, options to only include [...] and to exclude [...] |
|
|
311 |
for k, v in b.__dict__.items(): |
|
|
312 |
if (len(include) and k not in include) or k.startswith('_') or k in exclude: |
|
|
313 |
continue |
|
|
314 |
else: |
|
|
315 |
setattr(a, k, v) |
|
|
316 |
|
|
|
317 |
|
|
|
318 |
def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): |
|
|
319 |
# YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay |
|
|
320 |
g = [], [], [] # optimizer parameter groups |
|
|
321 |
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() |
|
|
322 |
for v in model.modules(): |
|
|
323 |
for p_name, p in v.named_parameters(recurse=0): |
|
|
324 |
if p_name == 'bias': # bias (no decay) |
|
|
325 |
g[2].append(p) |
|
|
326 |
elif p_name == 'weight' and isinstance(v, bn): # weight (no decay) |
|
|
327 |
g[1].append(p) |
|
|
328 |
else: |
|
|
329 |
g[0].append(p) # weight (with decay) |
|
|
330 |
|
|
|
331 |
if name == 'Adam': |
|
|
332 |
optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum |
|
|
333 |
elif name == 'AdamW': |
|
|
334 |
optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) |
|
|
335 |
elif name == 'RMSProp': |
|
|
336 |
optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) |
|
|
337 |
elif name == 'SGD': |
|
|
338 |
optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) |
|
|
339 |
else: |
|
|
340 |
raise NotImplementedError(f'Optimizer {name} not implemented.') |
|
|
341 |
|
|
|
342 |
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay |
|
|
343 |
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) |
|
|
344 |
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups " |
|
|
345 |
f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias') |
|
|
346 |
return optimizer |
|
|
347 |
|
|
|
348 |
|
|
|
349 |
def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs): |
|
|
350 |
# YOLOv5 torch.hub.load() wrapper with smart error/issue handling |
|
|
351 |
if check_version(torch.__version__, '1.9.1'): |
|
|
352 |
kwargs['skip_validation'] = True # validation causes GitHub API rate limit errors |
|
|
353 |
if check_version(torch.__version__, '1.12.0'): |
|
|
354 |
kwargs['trust_repo'] = True # argument required starting in torch 0.12 |
|
|
355 |
try: |
|
|
356 |
return torch.hub.load(repo, model, **kwargs) |
|
|
357 |
except Exception: |
|
|
358 |
return torch.hub.load(repo, model, force_reload=True, **kwargs) |
|
|
359 |
|
|
|
360 |
|
|
|
361 |
def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True): |
|
|
362 |
# Resume training from a partially trained checkpoint |
|
|
363 |
best_fitness = 0.0 |
|
|
364 |
start_epoch = ckpt['epoch'] + 1 |
|
|
365 |
if ckpt['optimizer'] is not None: |
|
|
366 |
optimizer.load_state_dict(ckpt['optimizer']) # optimizer |
|
|
367 |
best_fitness = ckpt['best_fitness'] |
|
|
368 |
if ema and ckpt.get('ema'): |
|
|
369 |
ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA |
|
|
370 |
ema.updates = ckpt['updates'] |
|
|
371 |
if resume: |
|
|
372 |
assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \ |
|
|
373 |
f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'" |
|
|
374 |
LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs') |
|
|
375 |
if epochs < start_epoch: |
|
|
376 |
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.") |
|
|
377 |
epochs += ckpt['epoch'] # finetune additional epochs |
|
|
378 |
return best_fitness, start_epoch, epochs |
|
|
379 |
|
|
|
380 |
|
|
|
381 |
class EarlyStopping: |
|
|
382 |
# YOLOv5 simple early stopper |
|
|
383 |
def __init__(self, patience=30): |
|
|
384 |
self.best_fitness = 0.0 # i.e. mAP |
|
|
385 |
self.best_epoch = 0 |
|
|
386 |
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop |
|
|
387 |
self.possible_stop = False # possible stop may occur next epoch |
|
|
388 |
|
|
|
389 |
def __call__(self, epoch, fitness): |
|
|
390 |
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training |
|
|
391 |
self.best_epoch = epoch |
|
|
392 |
self.best_fitness = fitness |
|
|
393 |
delta = epoch - self.best_epoch # epochs without improvement |
|
|
394 |
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch |
|
|
395 |
stop = delta >= self.patience # stop training if patience exceeded |
|
|
396 |
if stop: |
|
|
397 |
LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. ' |
|
|
398 |
f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n' |
|
|
399 |
f'To update EarlyStopping(patience={self.patience}) pass a new patience value, ' |
|
|
400 |
f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.') |
|
|
401 |
return stop |
|
|
402 |
|
|
|
403 |
|
|
|
404 |
class ModelEMA: |
|
|
405 |
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models |
|
|
406 |
Keeps a moving average of everything in the model state_dict (parameters and buffers) |
|
|
407 |
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage |
|
|
408 |
""" |
|
|
409 |
|
|
|
410 |
def __init__(self, model, decay=0.9999, tau=2000, updates=0): |
|
|
411 |
# Create EMA |
|
|
412 |
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA |
|
|
413 |
self.updates = updates # number of EMA updates |
|
|
414 |
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs) |
|
|
415 |
for p in self.ema.parameters(): |
|
|
416 |
p.requires_grad_(False) |
|
|
417 |
|
|
|
418 |
def update(self, model): |
|
|
419 |
# Update EMA parameters |
|
|
420 |
self.updates += 1 |
|
|
421 |
d = self.decay(self.updates) |
|
|
422 |
|
|
|
423 |
msd = de_parallel(model).state_dict() # model state_dict |
|
|
424 |
for k, v in self.ema.state_dict().items(): |
|
|
425 |
if v.dtype.is_floating_point: # true for FP16 and FP32 |
|
|
426 |
v *= d |
|
|
427 |
v += (1 - d) * msd[k].detach() |
|
|
428 |
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32' |
|
|
429 |
|
|
|
430 |
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): |
|
|
431 |
# Update EMA attributes |
|
|
432 |
copy_attr(self.ema, model, include, exclude) |