Diff of /utils/segment/plots.py [000000] .. [190ca4]

Switch to side-by-side view

--- a
+++ b/utils/segment/plots.py
@@ -0,0 +1,143 @@
+import contextlib
+import math
+from pathlib import Path
+
+import cv2
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import torch
+
+from .. import threaded
+from ..general import xywh2xyxy
+from ..plots import Annotator, colors
+
+
+@threaded
+def plot_images_and_masks(images, targets, masks, paths=None, fname='images.jpg', names=None):
+    # Plot image grid with labels
+    if isinstance(images, torch.Tensor):
+        images = images.cpu().float().numpy()
+    if isinstance(targets, torch.Tensor):
+        targets = targets.cpu().numpy()
+    if isinstance(masks, torch.Tensor):
+        masks = masks.cpu().numpy().astype(int)
+
+    max_size = 1920  # max image size
+    max_subplots = 16  # max image subplots, i.e. 4x4
+    bs, _, h, w = images.shape  # batch size, _, height, width
+    bs = min(bs, max_subplots)  # limit plot images
+    ns = np.ceil(bs ** 0.5)  # number of subplots (square)
+    if np.max(images[0]) <= 1:
+        images *= 255  # de-normalise (optional)
+
+    # Build Image
+    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
+    for i, im in enumerate(images):
+        if i == max_subplots:  # if last batch has fewer images than we expect
+            break
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        im = im.transpose(1, 2, 0)
+        mosaic[y:y + h, x:x + w, :] = im
+
+    # Resize (optional)
+    scale = max_size / ns / max(h, w)
+    if scale < 1:
+        h = math.ceil(scale * h)
+        w = math.ceil(scale * w)
+        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
+
+    # Annotate
+    fs = int((h + w) * ns * 0.01)  # font size
+    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
+    for i in range(i + 1):
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
+        if paths:
+            annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
+        if len(targets) > 0:
+            idx = targets[:, 0] == i
+            ti = targets[idx]  # image targets
+
+            boxes = xywh2xyxy(ti[:, 2:6]).T
+            classes = ti[:, 1].astype('int')
+            labels = ti.shape[1] == 6  # labels if no conf column
+            conf = None if labels else ti[:, 6]  # check for confidence presence (label vs pred)
+
+            if boxes.shape[1]:
+                if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
+                    boxes[[0, 2]] *= w  # scale to pixels
+                    boxes[[1, 3]] *= h
+                elif scale < 1:  # absolute coords need scale if image scales
+                    boxes *= scale
+            boxes[[0, 2]] += x
+            boxes[[1, 3]] += y
+            for j, box in enumerate(boxes.T.tolist()):
+                cls = classes[j]
+                color = colors(cls)
+                cls = names[cls] if names else cls
+                if labels or conf[j] > 0.25:  # 0.25 conf thresh
+                    label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
+                    annotator.box_label(box, label, color=color)
+
+            # Plot masks
+            if len(masks):
+                if masks.max() > 1.0:  # mean that masks are overlap
+                    image_masks = masks[[i]]  # (1, 640, 640)
+                    nl = len(ti)
+                    index = np.arange(nl).reshape(nl, 1, 1) + 1
+                    image_masks = np.repeat(image_masks, nl, axis=0)
+                    image_masks = np.where(image_masks == index, 1.0, 0.0)
+                else:
+                    image_masks = masks[idx]
+
+                im = np.asarray(annotator.im).copy()
+                for j, box in enumerate(boxes.T.tolist()):
+                    if labels or conf[j] > 0.25:  # 0.25 conf thresh
+                        color = colors(classes[j])
+                        mh, mw = image_masks[j].shape
+                        if mh != h or mw != w:
+                            mask = image_masks[j].astype(np.uint8)
+                            mask = cv2.resize(mask, (w, h))
+                            mask = mask.astype(bool)
+                        else:
+                            mask = image_masks[j].astype(bool)
+                        with contextlib.suppress(Exception):
+                            im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
+                annotator.fromarray(im)
+    annotator.im.save(fname)  # save
+
+
+def plot_results_with_masks(file='path/to/results.csv', dir='', best=True):
+    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
+    save_dir = Path(file).parent if file else Path(dir)
+    fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
+    ax = ax.ravel()
+    files = list(save_dir.glob('results*.csv'))
+    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
+    for f in files:
+        try:
+            data = pd.read_csv(f)
+            index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] +
+                              0.1 * data.values[:, 11])
+            s = [x.strip() for x in data.columns]
+            x = data.values[:, 0]
+            for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]):
+                y = data.values[:, j]
+                # y[y == 0] = np.nan  # don't show zero values
+                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=2)
+                if best:
+                    # best
+                    ax[i].scatter(index, y[index], color='r', label=f'best:{index}', marker='*', linewidth=3)
+                    ax[i].set_title(s[j] + f'\n{round(y[index], 5)}')
+                else:
+                    # last
+                    ax[i].scatter(x[-1], y[-1], color='r', label='last', marker='*', linewidth=3)
+                    ax[i].set_title(s[j] + f'\n{round(y[-1], 5)}')
+                # if j in [8, 9, 10]:  # share train and val loss y axes
+                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+        except Exception as e:
+            print(f'Warning: Plotting error for {f}: {e}')
+    ax[1].legend()
+    fig.savefig(save_dir / 'results.png', dpi=200)
+    plt.close()