|
a |
|
b/utils/segment/plots.py |
|
|
1 |
import contextlib |
|
|
2 |
import math |
|
|
3 |
from pathlib import Path |
|
|
4 |
|
|
|
5 |
import cv2 |
|
|
6 |
import matplotlib.pyplot as plt |
|
|
7 |
import numpy as np |
|
|
8 |
import pandas as pd |
|
|
9 |
import torch |
|
|
10 |
|
|
|
11 |
from .. import threaded |
|
|
12 |
from ..general import xywh2xyxy |
|
|
13 |
from ..plots import Annotator, colors |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
@threaded |
|
|
17 |
def plot_images_and_masks(images, targets, masks, paths=None, fname='images.jpg', names=None): |
|
|
18 |
# Plot image grid with labels |
|
|
19 |
if isinstance(images, torch.Tensor): |
|
|
20 |
images = images.cpu().float().numpy() |
|
|
21 |
if isinstance(targets, torch.Tensor): |
|
|
22 |
targets = targets.cpu().numpy() |
|
|
23 |
if isinstance(masks, torch.Tensor): |
|
|
24 |
masks = masks.cpu().numpy().astype(int) |
|
|
25 |
|
|
|
26 |
max_size = 1920 # max image size |
|
|
27 |
max_subplots = 16 # max image subplots, i.e. 4x4 |
|
|
28 |
bs, _, h, w = images.shape # batch size, _, height, width |
|
|
29 |
bs = min(bs, max_subplots) # limit plot images |
|
|
30 |
ns = np.ceil(bs ** 0.5) # number of subplots (square) |
|
|
31 |
if np.max(images[0]) <= 1: |
|
|
32 |
images *= 255 # de-normalise (optional) |
|
|
33 |
|
|
|
34 |
# Build Image |
|
|
35 |
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init |
|
|
36 |
for i, im in enumerate(images): |
|
|
37 |
if i == max_subplots: # if last batch has fewer images than we expect |
|
|
38 |
break |
|
|
39 |
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin |
|
|
40 |
im = im.transpose(1, 2, 0) |
|
|
41 |
mosaic[y:y + h, x:x + w, :] = im |
|
|
42 |
|
|
|
43 |
# Resize (optional) |
|
|
44 |
scale = max_size / ns / max(h, w) |
|
|
45 |
if scale < 1: |
|
|
46 |
h = math.ceil(scale * h) |
|
|
47 |
w = math.ceil(scale * w) |
|
|
48 |
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) |
|
|
49 |
|
|
|
50 |
# Annotate |
|
|
51 |
fs = int((h + w) * ns * 0.01) # font size |
|
|
52 |
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) |
|
|
53 |
for i in range(i + 1): |
|
|
54 |
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin |
|
|
55 |
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders |
|
|
56 |
if paths: |
|
|
57 |
annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames |
|
|
58 |
if len(targets) > 0: |
|
|
59 |
idx = targets[:, 0] == i |
|
|
60 |
ti = targets[idx] # image targets |
|
|
61 |
|
|
|
62 |
boxes = xywh2xyxy(ti[:, 2:6]).T |
|
|
63 |
classes = ti[:, 1].astype('int') |
|
|
64 |
labels = ti.shape[1] == 6 # labels if no conf column |
|
|
65 |
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred) |
|
|
66 |
|
|
|
67 |
if boxes.shape[1]: |
|
|
68 |
if boxes.max() <= 1.01: # if normalized with tolerance 0.01 |
|
|
69 |
boxes[[0, 2]] *= w # scale to pixels |
|
|
70 |
boxes[[1, 3]] *= h |
|
|
71 |
elif scale < 1: # absolute coords need scale if image scales |
|
|
72 |
boxes *= scale |
|
|
73 |
boxes[[0, 2]] += x |
|
|
74 |
boxes[[1, 3]] += y |
|
|
75 |
for j, box in enumerate(boxes.T.tolist()): |
|
|
76 |
cls = classes[j] |
|
|
77 |
color = colors(cls) |
|
|
78 |
cls = names[cls] if names else cls |
|
|
79 |
if labels or conf[j] > 0.25: # 0.25 conf thresh |
|
|
80 |
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}' |
|
|
81 |
annotator.box_label(box, label, color=color) |
|
|
82 |
|
|
|
83 |
# Plot masks |
|
|
84 |
if len(masks): |
|
|
85 |
if masks.max() > 1.0: # mean that masks are overlap |
|
|
86 |
image_masks = masks[[i]] # (1, 640, 640) |
|
|
87 |
nl = len(ti) |
|
|
88 |
index = np.arange(nl).reshape(nl, 1, 1) + 1 |
|
|
89 |
image_masks = np.repeat(image_masks, nl, axis=0) |
|
|
90 |
image_masks = np.where(image_masks == index, 1.0, 0.0) |
|
|
91 |
else: |
|
|
92 |
image_masks = masks[idx] |
|
|
93 |
|
|
|
94 |
im = np.asarray(annotator.im).copy() |
|
|
95 |
for j, box in enumerate(boxes.T.tolist()): |
|
|
96 |
if labels or conf[j] > 0.25: # 0.25 conf thresh |
|
|
97 |
color = colors(classes[j]) |
|
|
98 |
mh, mw = image_masks[j].shape |
|
|
99 |
if mh != h or mw != w: |
|
|
100 |
mask = image_masks[j].astype(np.uint8) |
|
|
101 |
mask = cv2.resize(mask, (w, h)) |
|
|
102 |
mask = mask.astype(bool) |
|
|
103 |
else: |
|
|
104 |
mask = image_masks[j].astype(bool) |
|
|
105 |
with contextlib.suppress(Exception): |
|
|
106 |
im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6 |
|
|
107 |
annotator.fromarray(im) |
|
|
108 |
annotator.im.save(fname) # save |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
def plot_results_with_masks(file='path/to/results.csv', dir='', best=True): |
|
|
112 |
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv') |
|
|
113 |
save_dir = Path(file).parent if file else Path(dir) |
|
|
114 |
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True) |
|
|
115 |
ax = ax.ravel() |
|
|
116 |
files = list(save_dir.glob('results*.csv')) |
|
|
117 |
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' |
|
|
118 |
for f in files: |
|
|
119 |
try: |
|
|
120 |
data = pd.read_csv(f) |
|
|
121 |
index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] + |
|
|
122 |
0.1 * data.values[:, 11]) |
|
|
123 |
s = [x.strip() for x in data.columns] |
|
|
124 |
x = data.values[:, 0] |
|
|
125 |
for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]): |
|
|
126 |
y = data.values[:, j] |
|
|
127 |
# y[y == 0] = np.nan # don't show zero values |
|
|
128 |
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=2) |
|
|
129 |
if best: |
|
|
130 |
# best |
|
|
131 |
ax[i].scatter(index, y[index], color='r', label=f'best:{index}', marker='*', linewidth=3) |
|
|
132 |
ax[i].set_title(s[j] + f'\n{round(y[index], 5)}') |
|
|
133 |
else: |
|
|
134 |
# last |
|
|
135 |
ax[i].scatter(x[-1], y[-1], color='r', label='last', marker='*', linewidth=3) |
|
|
136 |
ax[i].set_title(s[j] + f'\n{round(y[-1], 5)}') |
|
|
137 |
# if j in [8, 9, 10]: # share train and val loss y axes |
|
|
138 |
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) |
|
|
139 |
except Exception as e: |
|
|
140 |
print(f'Warning: Plotting error for {f}: {e}') |
|
|
141 |
ax[1].legend() |
|
|
142 |
fig.savefig(save_dir / 'results.png', dpi=200) |
|
|
143 |
plt.close() |