|
a |
|
b/utils/segment/metrics.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Model validation metrics |
|
|
4 |
""" |
|
|
5 |
|
|
|
6 |
import numpy as np |
|
|
7 |
|
|
|
8 |
from ..metrics import ap_per_class |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
def fitness(x): |
|
|
12 |
# Model fitness as a weighted combination of metrics |
|
|
13 |
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9] |
|
|
14 |
return (x[:, :8] * w).sum(1) |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
def ap_per_class_box_and_mask( |
|
|
18 |
tp_m, |
|
|
19 |
tp_b, |
|
|
20 |
conf, |
|
|
21 |
pred_cls, |
|
|
22 |
target_cls, |
|
|
23 |
plot=False, |
|
|
24 |
save_dir='.', |
|
|
25 |
names=(), |
|
|
26 |
): |
|
|
27 |
""" |
|
|
28 |
Args: |
|
|
29 |
tp_b: tp of boxes. |
|
|
30 |
tp_m: tp of masks. |
|
|
31 |
other arguments see `func: ap_per_class`. |
|
|
32 |
""" |
|
|
33 |
results_boxes = ap_per_class(tp_b, |
|
|
34 |
conf, |
|
|
35 |
pred_cls, |
|
|
36 |
target_cls, |
|
|
37 |
plot=plot, |
|
|
38 |
save_dir=save_dir, |
|
|
39 |
names=names, |
|
|
40 |
prefix='Box')[2:] |
|
|
41 |
results_masks = ap_per_class(tp_m, |
|
|
42 |
conf, |
|
|
43 |
pred_cls, |
|
|
44 |
target_cls, |
|
|
45 |
plot=plot, |
|
|
46 |
save_dir=save_dir, |
|
|
47 |
names=names, |
|
|
48 |
prefix='Mask')[2:] |
|
|
49 |
|
|
|
50 |
results = { |
|
|
51 |
'boxes': { |
|
|
52 |
'p': results_boxes[0], |
|
|
53 |
'r': results_boxes[1], |
|
|
54 |
'ap': results_boxes[3], |
|
|
55 |
'f1': results_boxes[2], |
|
|
56 |
'ap_class': results_boxes[4]}, |
|
|
57 |
'masks': { |
|
|
58 |
'p': results_masks[0], |
|
|
59 |
'r': results_masks[1], |
|
|
60 |
'ap': results_masks[3], |
|
|
61 |
'f1': results_masks[2], |
|
|
62 |
'ap_class': results_masks[4]}} |
|
|
63 |
return results |
|
|
64 |
|
|
|
65 |
|
|
|
66 |
class Metric: |
|
|
67 |
|
|
|
68 |
def __init__(self) -> None: |
|
|
69 |
self.p = [] # (nc, ) |
|
|
70 |
self.r = [] # (nc, ) |
|
|
71 |
self.f1 = [] # (nc, ) |
|
|
72 |
self.all_ap = [] # (nc, 10) |
|
|
73 |
self.ap_class_index = [] # (nc, ) |
|
|
74 |
|
|
|
75 |
@property |
|
|
76 |
def ap50(self): |
|
|
77 |
"""AP@0.5 of all classes. |
|
|
78 |
Return: |
|
|
79 |
(nc, ) or []. |
|
|
80 |
""" |
|
|
81 |
return self.all_ap[:, 0] if len(self.all_ap) else [] |
|
|
82 |
|
|
|
83 |
@property |
|
|
84 |
def ap(self): |
|
|
85 |
"""AP@0.5:0.95 |
|
|
86 |
Return: |
|
|
87 |
(nc, ) or []. |
|
|
88 |
""" |
|
|
89 |
return self.all_ap.mean(1) if len(self.all_ap) else [] |
|
|
90 |
|
|
|
91 |
@property |
|
|
92 |
def mp(self): |
|
|
93 |
"""mean precision of all classes. |
|
|
94 |
Return: |
|
|
95 |
float. |
|
|
96 |
""" |
|
|
97 |
return self.p.mean() if len(self.p) else 0.0 |
|
|
98 |
|
|
|
99 |
@property |
|
|
100 |
def mr(self): |
|
|
101 |
"""mean recall of all classes. |
|
|
102 |
Return: |
|
|
103 |
float. |
|
|
104 |
""" |
|
|
105 |
return self.r.mean() if len(self.r) else 0.0 |
|
|
106 |
|
|
|
107 |
@property |
|
|
108 |
def map50(self): |
|
|
109 |
"""Mean AP@0.5 of all classes. |
|
|
110 |
Return: |
|
|
111 |
float. |
|
|
112 |
""" |
|
|
113 |
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0 |
|
|
114 |
|
|
|
115 |
@property |
|
|
116 |
def map(self): |
|
|
117 |
"""Mean AP@0.5:0.95 of all classes. |
|
|
118 |
Return: |
|
|
119 |
float. |
|
|
120 |
""" |
|
|
121 |
return self.all_ap.mean() if len(self.all_ap) else 0.0 |
|
|
122 |
|
|
|
123 |
def mean_results(self): |
|
|
124 |
"""Mean of results, return mp, mr, map50, map""" |
|
|
125 |
return (self.mp, self.mr, self.map50, self.map) |
|
|
126 |
|
|
|
127 |
def class_result(self, i): |
|
|
128 |
"""class-aware result, return p[i], r[i], ap50[i], ap[i]""" |
|
|
129 |
return (self.p[i], self.r[i], self.ap50[i], self.ap[i]) |
|
|
130 |
|
|
|
131 |
def get_maps(self, nc): |
|
|
132 |
maps = np.zeros(nc) + self.map |
|
|
133 |
for i, c in enumerate(self.ap_class_index): |
|
|
134 |
maps[c] = self.ap[i] |
|
|
135 |
return maps |
|
|
136 |
|
|
|
137 |
def update(self, results): |
|
|
138 |
""" |
|
|
139 |
Args: |
|
|
140 |
results: tuple(p, r, ap, f1, ap_class) |
|
|
141 |
""" |
|
|
142 |
p, r, all_ap, f1, ap_class_index = results |
|
|
143 |
self.p = p |
|
|
144 |
self.r = r |
|
|
145 |
self.all_ap = all_ap |
|
|
146 |
self.f1 = f1 |
|
|
147 |
self.ap_class_index = ap_class_index |
|
|
148 |
|
|
|
149 |
|
|
|
150 |
class Metrics: |
|
|
151 |
"""Metric for boxes and masks.""" |
|
|
152 |
|
|
|
153 |
def __init__(self) -> None: |
|
|
154 |
self.metric_box = Metric() |
|
|
155 |
self.metric_mask = Metric() |
|
|
156 |
|
|
|
157 |
def update(self, results): |
|
|
158 |
""" |
|
|
159 |
Args: |
|
|
160 |
results: Dict{'boxes': Dict{}, 'masks': Dict{}} |
|
|
161 |
""" |
|
|
162 |
self.metric_box.update(list(results['boxes'].values())) |
|
|
163 |
self.metric_mask.update(list(results['masks'].values())) |
|
|
164 |
|
|
|
165 |
def mean_results(self): |
|
|
166 |
return self.metric_box.mean_results() + self.metric_mask.mean_results() |
|
|
167 |
|
|
|
168 |
def class_result(self, i): |
|
|
169 |
return self.metric_box.class_result(i) + self.metric_mask.class_result(i) |
|
|
170 |
|
|
|
171 |
def get_maps(self, nc): |
|
|
172 |
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc) |
|
|
173 |
|
|
|
174 |
@property |
|
|
175 |
def ap_class_index(self): |
|
|
176 |
# boxes and masks have the same ap_class_index |
|
|
177 |
return self.metric_box.ap_class_index |
|
|
178 |
|
|
|
179 |
|
|
|
180 |
KEYS = [ |
|
|
181 |
'train/box_loss', |
|
|
182 |
'train/seg_loss', # train loss |
|
|
183 |
'train/obj_loss', |
|
|
184 |
'train/cls_loss', |
|
|
185 |
'metrics/precision(B)', |
|
|
186 |
'metrics/recall(B)', |
|
|
187 |
'metrics/mAP_0.5(B)', |
|
|
188 |
'metrics/mAP_0.5:0.95(B)', # metrics |
|
|
189 |
'metrics/precision(M)', |
|
|
190 |
'metrics/recall(M)', |
|
|
191 |
'metrics/mAP_0.5(M)', |
|
|
192 |
'metrics/mAP_0.5:0.95(M)', # metrics |
|
|
193 |
'val/box_loss', |
|
|
194 |
'val/seg_loss', # val loss |
|
|
195 |
'val/obj_loss', |
|
|
196 |
'val/cls_loss', |
|
|
197 |
'x/lr0', |
|
|
198 |
'x/lr1', |
|
|
199 |
'x/lr2', ] |
|
|
200 |
|
|
|
201 |
BEST_KEYS = [ |
|
|
202 |
'best/epoch', |
|
|
203 |
'best/precision(B)', |
|
|
204 |
'best/recall(B)', |
|
|
205 |
'best/mAP_0.5(B)', |
|
|
206 |
'best/mAP_0.5:0.95(B)', |
|
|
207 |
'best/precision(M)', |
|
|
208 |
'best/recall(M)', |
|
|
209 |
'best/mAP_0.5(M)', |
|
|
210 |
'best/mAP_0.5:0.95(M)', ] |