|
a |
|
b/utils/segment/loss.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
import torch.nn.functional as F |
|
|
4 |
|
|
|
5 |
from ..general import xywh2xyxy |
|
|
6 |
from ..loss import FocalLoss, smooth_BCE |
|
|
7 |
from ..metrics import bbox_iou |
|
|
8 |
from ..torch_utils import de_parallel |
|
|
9 |
from .general import crop_mask |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
class ComputeLoss: |
|
|
13 |
# Compute losses |
|
|
14 |
def __init__(self, model, autobalance=False, overlap=False): |
|
|
15 |
self.sort_obj_iou = False |
|
|
16 |
self.overlap = overlap |
|
|
17 |
device = next(model.parameters()).device # get model device |
|
|
18 |
h = model.hyp # hyperparameters |
|
|
19 |
|
|
|
20 |
# Define criteria |
|
|
21 |
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) |
|
|
22 |
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) |
|
|
23 |
|
|
|
24 |
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 |
|
|
25 |
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets |
|
|
26 |
|
|
|
27 |
# Focal loss |
|
|
28 |
g = h['fl_gamma'] # focal loss gamma |
|
|
29 |
if g > 0: |
|
|
30 |
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) |
|
|
31 |
|
|
|
32 |
m = de_parallel(model).model[-1] # Detect() module |
|
|
33 |
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 |
|
|
34 |
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index |
|
|
35 |
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance |
|
|
36 |
self.na = m.na # number of anchors |
|
|
37 |
self.nc = m.nc # number of classes |
|
|
38 |
self.nl = m.nl # number of layers |
|
|
39 |
self.nm = m.nm # number of masks |
|
|
40 |
self.anchors = m.anchors |
|
|
41 |
self.device = device |
|
|
42 |
|
|
|
43 |
def __call__(self, preds, targets, masks): # predictions, targets, model |
|
|
44 |
p, proto = preds |
|
|
45 |
bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width |
|
|
46 |
lcls = torch.zeros(1, device=self.device) |
|
|
47 |
lbox = torch.zeros(1, device=self.device) |
|
|
48 |
lobj = torch.zeros(1, device=self.device) |
|
|
49 |
lseg = torch.zeros(1, device=self.device) |
|
|
50 |
tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(p, targets) # targets |
|
|
51 |
|
|
|
52 |
# Losses |
|
|
53 |
for i, pi in enumerate(p): # layer index, layer predictions |
|
|
54 |
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx |
|
|
55 |
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj |
|
|
56 |
|
|
|
57 |
n = b.shape[0] # number of targets |
|
|
58 |
if n: |
|
|
59 |
pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, self.nc, nm), 1) # subset of predictions |
|
|
60 |
|
|
|
61 |
# Box regression |
|
|
62 |
pxy = pxy.sigmoid() * 2 - 0.5 |
|
|
63 |
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] |
|
|
64 |
pbox = torch.cat((pxy, pwh), 1) # predicted box |
|
|
65 |
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target) |
|
|
66 |
lbox += (1.0 - iou).mean() # iou loss |
|
|
67 |
|
|
|
68 |
# Objectness |
|
|
69 |
iou = iou.detach().clamp(0).type(tobj.dtype) |
|
|
70 |
if self.sort_obj_iou: |
|
|
71 |
j = iou.argsort() |
|
|
72 |
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j] |
|
|
73 |
if self.gr < 1: |
|
|
74 |
iou = (1.0 - self.gr) + self.gr * iou |
|
|
75 |
tobj[b, a, gj, gi] = iou # iou ratio |
|
|
76 |
|
|
|
77 |
# Classification |
|
|
78 |
if self.nc > 1: # cls loss (only if multiple classes) |
|
|
79 |
t = torch.full_like(pcls, self.cn, device=self.device) # targets |
|
|
80 |
t[range(n), tcls[i]] = self.cp |
|
|
81 |
lcls += self.BCEcls(pcls, t) # BCE |
|
|
82 |
|
|
|
83 |
# Mask regression |
|
|
84 |
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample |
|
|
85 |
masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0] |
|
|
86 |
marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized |
|
|
87 |
mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)) |
|
|
88 |
for bi in b.unique(): |
|
|
89 |
j = b == bi # matching index |
|
|
90 |
if self.overlap: |
|
|
91 |
mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0) |
|
|
92 |
else: |
|
|
93 |
mask_gti = masks[tidxs[i]][j] |
|
|
94 |
lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j]) |
|
|
95 |
|
|
|
96 |
obji = self.BCEobj(pi[..., 4], tobj) |
|
|
97 |
lobj += obji * self.balance[i] # obj loss |
|
|
98 |
if self.autobalance: |
|
|
99 |
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() |
|
|
100 |
|
|
|
101 |
if self.autobalance: |
|
|
102 |
self.balance = [x / self.balance[self.ssi] for x in self.balance] |
|
|
103 |
lbox *= self.hyp['box'] |
|
|
104 |
lobj *= self.hyp['obj'] |
|
|
105 |
lcls *= self.hyp['cls'] |
|
|
106 |
lseg *= self.hyp['box'] / bs |
|
|
107 |
|
|
|
108 |
loss = lbox + lobj + lcls + lseg |
|
|
109 |
return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach() |
|
|
110 |
|
|
|
111 |
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area): |
|
|
112 |
# Mask loss for one image |
|
|
113 |
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80) |
|
|
114 |
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none') |
|
|
115 |
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean() |
|
|
116 |
|
|
|
117 |
def build_targets(self, p, targets): |
|
|
118 |
# Build targets for compute_loss(), input targets(image,class,x,y,w,h) |
|
|
119 |
na, nt = self.na, targets.shape[0] # number of anchors, targets |
|
|
120 |
tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], [] |
|
|
121 |
gain = torch.ones(8, device=self.device) # normalized to gridspace gain |
|
|
122 |
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) |
|
|
123 |
if self.overlap: |
|
|
124 |
batch = p[0].shape[0] |
|
|
125 |
ti = [] |
|
|
126 |
for i in range(batch): |
|
|
127 |
num = (targets[:, 0] == i).sum() # find number of targets of each image |
|
|
128 |
ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num) |
|
|
129 |
ti = torch.cat(ti, 1) # (na, nt) |
|
|
130 |
else: |
|
|
131 |
ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1) |
|
|
132 |
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices |
|
|
133 |
|
|
|
134 |
g = 0.5 # bias |
|
|
135 |
off = torch.tensor( |
|
|
136 |
[ |
|
|
137 |
[0, 0], |
|
|
138 |
[1, 0], |
|
|
139 |
[0, 1], |
|
|
140 |
[-1, 0], |
|
|
141 |
[0, -1], # j,k,l,m |
|
|
142 |
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm |
|
|
143 |
], |
|
|
144 |
device=self.device).float() * g # offsets |
|
|
145 |
|
|
|
146 |
for i in range(self.nl): |
|
|
147 |
anchors, shape = self.anchors[i], p[i].shape |
|
|
148 |
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain |
|
|
149 |
|
|
|
150 |
# Match targets to anchors |
|
|
151 |
t = targets * gain # shape(3,n,7) |
|
|
152 |
if nt: |
|
|
153 |
# Matches |
|
|
154 |
r = t[..., 4:6] / anchors[:, None] # wh ratio |
|
|
155 |
j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare |
|
|
156 |
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) |
|
|
157 |
t = t[j] # filter |
|
|
158 |
|
|
|
159 |
# Offsets |
|
|
160 |
gxy = t[:, 2:4] # grid xy |
|
|
161 |
gxi = gain[[2, 3]] - gxy # inverse |
|
|
162 |
j, k = ((gxy % 1 < g) & (gxy > 1)).T |
|
|
163 |
l, m = ((gxi % 1 < g) & (gxi > 1)).T |
|
|
164 |
j = torch.stack((torch.ones_like(j), j, k, l, m)) |
|
|
165 |
t = t.repeat((5, 1, 1))[j] |
|
|
166 |
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] |
|
|
167 |
else: |
|
|
168 |
t = targets[0] |
|
|
169 |
offsets = 0 |
|
|
170 |
|
|
|
171 |
# Define |
|
|
172 |
bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors |
|
|
173 |
(a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class |
|
|
174 |
gij = (gxy - offsets).long() |
|
|
175 |
gi, gj = gij.T # grid indices |
|
|
176 |
|
|
|
177 |
# Append |
|
|
178 |
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid |
|
|
179 |
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box |
|
|
180 |
anch.append(anchors[a]) # anchors |
|
|
181 |
tcls.append(c) # class |
|
|
182 |
tidxs.append(tidx) |
|
|
183 |
xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized |
|
|
184 |
|
|
|
185 |
return tcls, tbox, indices, anch, tidxs, xywhn |