|
a |
|
b/utils/segment/general.py |
|
|
1 |
import cv2 |
|
|
2 |
import numpy as np |
|
|
3 |
import torch |
|
|
4 |
import torch.nn.functional as F |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
def crop_mask(masks, boxes): |
|
|
8 |
""" |
|
|
9 |
"Crop" predicted masks by zeroing out everything not in the predicted bbox. |
|
|
10 |
Vectorized by Chong (thanks Chong). |
|
|
11 |
|
|
|
12 |
Args: |
|
|
13 |
- masks should be a size [n, h, w] tensor of masks |
|
|
14 |
- boxes should be a size [n, 4] tensor of bbox coords in relative point form |
|
|
15 |
""" |
|
|
16 |
|
|
|
17 |
n, h, w = masks.shape |
|
|
18 |
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n) |
|
|
19 |
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1) |
|
|
20 |
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1) |
|
|
21 |
|
|
|
22 |
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2)) |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
def process_mask_upsample(protos, masks_in, bboxes, shape): |
|
|
26 |
""" |
|
|
27 |
Crop after upsample. |
|
|
28 |
protos: [mask_dim, mask_h, mask_w] |
|
|
29 |
masks_in: [n, mask_dim], n is number of masks after nms |
|
|
30 |
bboxes: [n, 4], n is number of masks after nms |
|
|
31 |
shape: input_image_size, (h, w) |
|
|
32 |
|
|
|
33 |
return: h, w, n |
|
|
34 |
""" |
|
|
35 |
|
|
|
36 |
c, mh, mw = protos.shape # CHW |
|
|
37 |
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) |
|
|
38 |
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW |
|
|
39 |
masks = crop_mask(masks, bboxes) # CHW |
|
|
40 |
return masks.gt_(0.5) |
|
|
41 |
|
|
|
42 |
|
|
|
43 |
def process_mask(protos, masks_in, bboxes, shape, upsample=False): |
|
|
44 |
""" |
|
|
45 |
Crop before upsample. |
|
|
46 |
proto_out: [mask_dim, mask_h, mask_w] |
|
|
47 |
out_masks: [n, mask_dim], n is number of masks after nms |
|
|
48 |
bboxes: [n, 4], n is number of masks after nms |
|
|
49 |
shape:input_image_size, (h, w) |
|
|
50 |
|
|
|
51 |
return: h, w, n |
|
|
52 |
""" |
|
|
53 |
|
|
|
54 |
c, mh, mw = protos.shape # CHW |
|
|
55 |
ih, iw = shape |
|
|
56 |
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW |
|
|
57 |
|
|
|
58 |
downsampled_bboxes = bboxes.clone() |
|
|
59 |
downsampled_bboxes[:, 0] *= mw / iw |
|
|
60 |
downsampled_bboxes[:, 2] *= mw / iw |
|
|
61 |
downsampled_bboxes[:, 3] *= mh / ih |
|
|
62 |
downsampled_bboxes[:, 1] *= mh / ih |
|
|
63 |
|
|
|
64 |
masks = crop_mask(masks, downsampled_bboxes) # CHW |
|
|
65 |
if upsample: |
|
|
66 |
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW |
|
|
67 |
return masks.gt_(0.5) |
|
|
68 |
|
|
|
69 |
|
|
|
70 |
def process_mask_native(protos, masks_in, bboxes, shape): |
|
|
71 |
""" |
|
|
72 |
Crop after upsample. |
|
|
73 |
protos: [mask_dim, mask_h, mask_w] |
|
|
74 |
masks_in: [n, mask_dim], n is number of masks after nms |
|
|
75 |
bboxes: [n, 4], n is number of masks after nms |
|
|
76 |
shape: input_image_size, (h, w) |
|
|
77 |
|
|
|
78 |
return: h, w, n |
|
|
79 |
""" |
|
|
80 |
c, mh, mw = protos.shape # CHW |
|
|
81 |
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) |
|
|
82 |
gain = min(mh / shape[0], mw / shape[1]) # gain = old / new |
|
|
83 |
pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2 # wh padding |
|
|
84 |
top, left = int(pad[1]), int(pad[0]) # y, x |
|
|
85 |
bottom, right = int(mh - pad[1]), int(mw - pad[0]) |
|
|
86 |
masks = masks[:, top:bottom, left:right] |
|
|
87 |
|
|
|
88 |
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW |
|
|
89 |
masks = crop_mask(masks, bboxes) # CHW |
|
|
90 |
return masks.gt_(0.5) |
|
|
91 |
|
|
|
92 |
|
|
|
93 |
def scale_image(im1_shape, masks, im0_shape, ratio_pad=None): |
|
|
94 |
""" |
|
|
95 |
img1_shape: model input shape, [h, w] |
|
|
96 |
img0_shape: origin pic shape, [h, w, 3] |
|
|
97 |
masks: [h, w, num] |
|
|
98 |
""" |
|
|
99 |
# Rescale coordinates (xyxy) from im1_shape to im0_shape |
|
|
100 |
if ratio_pad is None: # calculate from im0_shape |
|
|
101 |
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new |
|
|
102 |
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding |
|
|
103 |
else: |
|
|
104 |
pad = ratio_pad[1] |
|
|
105 |
top, left = int(pad[1]), int(pad[0]) # y, x |
|
|
106 |
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0]) |
|
|
107 |
|
|
|
108 |
if len(masks.shape) < 2: |
|
|
109 |
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}') |
|
|
110 |
masks = masks[top:bottom, left:right] |
|
|
111 |
# masks = masks.permute(2, 0, 1).contiguous() |
|
|
112 |
# masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0] |
|
|
113 |
# masks = masks.permute(1, 2, 0).contiguous() |
|
|
114 |
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0])) |
|
|
115 |
|
|
|
116 |
if len(masks.shape) == 2: |
|
|
117 |
masks = masks[:, :, None] |
|
|
118 |
return masks |
|
|
119 |
|
|
|
120 |
|
|
|
121 |
def mask_iou(mask1, mask2, eps=1e-7): |
|
|
122 |
""" |
|
|
123 |
mask1: [N, n] m1 means number of predicted objects |
|
|
124 |
mask2: [M, n] m2 means number of gt objects |
|
|
125 |
Note: n means image_w x image_h |
|
|
126 |
|
|
|
127 |
return: masks iou, [N, M] |
|
|
128 |
""" |
|
|
129 |
intersection = torch.matmul(mask1, mask2.t()).clamp(0) |
|
|
130 |
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection |
|
|
131 |
return intersection / (union + eps) |
|
|
132 |
|
|
|
133 |
|
|
|
134 |
def masks_iou(mask1, mask2, eps=1e-7): |
|
|
135 |
""" |
|
|
136 |
mask1: [N, n] m1 means number of predicted objects |
|
|
137 |
mask2: [N, n] m2 means number of gt objects |
|
|
138 |
Note: n means image_w x image_h |
|
|
139 |
|
|
|
140 |
return: masks iou, (N, ) |
|
|
141 |
""" |
|
|
142 |
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, ) |
|
|
143 |
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection |
|
|
144 |
return intersection / (union + eps) |
|
|
145 |
|
|
|
146 |
|
|
|
147 |
def masks2segments(masks, strategy='largest'): |
|
|
148 |
# Convert masks(n,160,160) into segments(n,xy) |
|
|
149 |
segments = [] |
|
|
150 |
for x in masks.int().cpu().numpy().astype('uint8'): |
|
|
151 |
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] |
|
|
152 |
if c: |
|
|
153 |
if strategy == 'concat': # concatenate all segments |
|
|
154 |
c = np.concatenate([x.reshape(-1, 2) for x in c]) |
|
|
155 |
elif strategy == 'largest': # select largest segment |
|
|
156 |
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2) |
|
|
157 |
else: |
|
|
158 |
c = np.zeros((0, 2)) # no segments found |
|
|
159 |
segments.append(c.astype('float32')) |
|
|
160 |
return segments |