Diff of /utils/segment/general.py [000000] .. [190ca4]

Switch to side-by-side view

--- a
+++ b/utils/segment/general.py
@@ -0,0 +1,160 @@
+import cv2
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+
+def crop_mask(masks, boxes):
+    """
+    "Crop" predicted masks by zeroing out everything not in the predicted bbox.
+    Vectorized by Chong (thanks Chong).
+
+    Args:
+        - masks should be a size [n, h, w] tensor of masks
+        - boxes should be a size [n, 4] tensor of bbox coords in relative point form
+    """
+
+    n, h, w = masks.shape
+    x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1)  # x1 shape(1,1,n)
+    r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :]  # rows shape(1,w,1)
+    c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None]  # cols shape(h,1,1)
+
+    return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
+
+
+def process_mask_upsample(protos, masks_in, bboxes, shape):
+    """
+    Crop after upsample.
+    protos: [mask_dim, mask_h, mask_w]
+    masks_in: [n, mask_dim], n is number of masks after nms
+    bboxes: [n, 4], n is number of masks after nms
+    shape: input_image_size, (h, w)
+
+    return: h, w, n
+    """
+
+    c, mh, mw = protos.shape  # CHW
+    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
+    masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
+    masks = crop_mask(masks, bboxes)  # CHW
+    return masks.gt_(0.5)
+
+
+def process_mask(protos, masks_in, bboxes, shape, upsample=False):
+    """
+    Crop before upsample.
+    proto_out: [mask_dim, mask_h, mask_w]
+    out_masks: [n, mask_dim], n is number of masks after nms
+    bboxes: [n, 4], n is number of masks after nms
+    shape:input_image_size, (h, w)
+
+    return: h, w, n
+    """
+
+    c, mh, mw = protos.shape  # CHW
+    ih, iw = shape
+    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)  # CHW
+
+    downsampled_bboxes = bboxes.clone()
+    downsampled_bboxes[:, 0] *= mw / iw
+    downsampled_bboxes[:, 2] *= mw / iw
+    downsampled_bboxes[:, 3] *= mh / ih
+    downsampled_bboxes[:, 1] *= mh / ih
+
+    masks = crop_mask(masks, downsampled_bboxes)  # CHW
+    if upsample:
+        masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
+    return masks.gt_(0.5)
+
+
+def process_mask_native(protos, masks_in, bboxes, shape):
+    """
+    Crop after upsample.
+    protos: [mask_dim, mask_h, mask_w]
+    masks_in: [n, mask_dim], n is number of masks after nms
+    bboxes: [n, 4], n is number of masks after nms
+    shape: input_image_size, (h, w)
+
+    return: h, w, n
+    """
+    c, mh, mw = protos.shape  # CHW
+    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
+    gain = min(mh / shape[0], mw / shape[1])  # gain  = old / new
+    pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2  # wh padding
+    top, left = int(pad[1]), int(pad[0])  # y, x
+    bottom, right = int(mh - pad[1]), int(mw - pad[0])
+    masks = masks[:, top:bottom, left:right]
+
+    masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
+    masks = crop_mask(masks, bboxes)  # CHW
+    return masks.gt_(0.5)
+
+
+def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
+    """
+    img1_shape: model input shape, [h, w]
+    img0_shape: origin pic shape, [h, w, 3]
+    masks: [h, w, num]
+    """
+    # Rescale coordinates (xyxy) from im1_shape to im0_shape
+    if ratio_pad is None:  # calculate from im0_shape
+        gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1])  # gain  = old / new
+        pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2  # wh padding
+    else:
+        pad = ratio_pad[1]
+    top, left = int(pad[1]), int(pad[0])  # y, x
+    bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
+
+    if len(masks.shape) < 2:
+        raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
+    masks = masks[top:bottom, left:right]
+    # masks = masks.permute(2, 0, 1).contiguous()
+    # masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
+    # masks = masks.permute(1, 2, 0).contiguous()
+    masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
+
+    if len(masks.shape) == 2:
+        masks = masks[:, :, None]
+    return masks
+
+
+def mask_iou(mask1, mask2, eps=1e-7):
+    """
+    mask1: [N, n] m1 means number of predicted objects
+    mask2: [M, n] m2 means number of gt objects
+    Note: n means image_w x image_h
+
+    return: masks iou, [N, M]
+    """
+    intersection = torch.matmul(mask1, mask2.t()).clamp(0)
+    union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection  # (area1 + area2) - intersection
+    return intersection / (union + eps)
+
+
+def masks_iou(mask1, mask2, eps=1e-7):
+    """
+    mask1: [N, n] m1 means number of predicted objects
+    mask2: [N, n] m2 means number of gt objects
+    Note: n means image_w x image_h
+
+    return: masks iou, (N, )
+    """
+    intersection = (mask1 * mask2).sum(1).clamp(0)  # (N, )
+    union = (mask1.sum(1) + mask2.sum(1))[None] - intersection  # (area1 + area2) - intersection
+    return intersection / (union + eps)
+
+
+def masks2segments(masks, strategy='largest'):
+    # Convert masks(n,160,160) into segments(n,xy)
+    segments = []
+    for x in masks.int().cpu().numpy().astype('uint8'):
+        c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
+        if c:
+            if strategy == 'concat':  # concatenate all segments
+                c = np.concatenate([x.reshape(-1, 2) for x in c])
+            elif strategy == 'largest':  # select largest segment
+                c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
+        else:
+            c = np.zeros((0, 2))  # no segments found
+        segments.append(c.astype('float32'))
+    return segments