Switch to side-by-side view

--- a
+++ b/utils/segment/dataloaders.py
@@ -0,0 +1,335 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Dataloaders
+"""
+
+import os
+import random
+
+import cv2
+import numpy as np
+import torch
+from torch.utils.data import DataLoader, distributed
+
+from ..augmentations import augment_hsv, copy_paste, letterbox
+from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, SmartDistributedSampler, seed_worker
+from ..general import LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn
+from ..torch_utils import torch_distributed_zero_first
+from .augmentations import mixup, random_perspective
+
+RANK = int(os.getenv('RANK', -1))
+
+
+def create_dataloader(path,
+                      imgsz,
+                      batch_size,
+                      stride,
+                      single_cls=False,
+                      hyp=None,
+                      augment=False,
+                      cache=False,
+                      pad=0.0,
+                      rect=False,
+                      rank=-1,
+                      workers=8,
+                      image_weights=False,
+                      quad=False,
+                      prefix='',
+                      shuffle=False,
+                      mask_downsample_ratio=1,
+                      overlap_mask=False,
+                      seed=0):
+    if rect and shuffle:
+        LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
+        shuffle = False
+    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
+        dataset = LoadImagesAndLabelsAndMasks(
+            path,
+            imgsz,
+            batch_size,
+            augment=augment,  # augmentation
+            hyp=hyp,  # hyperparameters
+            rect=rect,  # rectangular batches
+            cache_images=cache,
+            single_cls=single_cls,
+            stride=int(stride),
+            pad=pad,
+            image_weights=image_weights,
+            prefix=prefix,
+            downsample_ratio=mask_downsample_ratio,
+            overlap=overlap_mask,
+            rank=rank)
+
+    batch_size = min(batch_size, len(dataset))
+    nd = torch.cuda.device_count()  # number of CUDA devices
+    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])  # number of workers
+    sampler = None if rank == -1 else SmartDistributedSampler(dataset, shuffle=shuffle)
+    loader = DataLoader if image_weights else InfiniteDataLoader  # only DataLoader allows for attribute updates
+    generator = torch.Generator()
+    generator.manual_seed(6148914691236517205 + seed + RANK)
+    return loader(
+        dataset,
+        batch_size=batch_size,
+        shuffle=shuffle and sampler is None,
+        num_workers=nw,
+        sampler=sampler,
+        pin_memory=True,
+        collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn,
+        worker_init_fn=seed_worker,
+        generator=generator,
+    ), dataset
+
+
+class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels):  # for training/testing
+
+    def __init__(
+        self,
+        path,
+        img_size=640,
+        batch_size=16,
+        augment=False,
+        hyp=None,
+        rect=False,
+        image_weights=False,
+        cache_images=False,
+        single_cls=False,
+        stride=32,
+        pad=0,
+        min_items=0,
+        prefix='',
+        downsample_ratio=1,
+        overlap=False,
+        rank=-1,
+        seed=0,
+    ):
+        super().__init__(path, img_size, batch_size, augment, hyp, rect, image_weights, cache_images, single_cls,
+                         stride, pad, min_items, prefix, rank, seed)
+        self.downsample_ratio = downsample_ratio
+        self.overlap = overlap
+
+    def __getitem__(self, index):
+        index = self.indices[index]  # linear, shuffled, or image_weights
+
+        hyp = self.hyp
+        mosaic = self.mosaic and random.random() < hyp['mosaic']
+        masks = []
+        if mosaic:
+            # Load mosaic
+            img, labels, segments = self.load_mosaic(index)
+            shapes = None
+
+            # MixUp augmentation
+            if random.random() < hyp['mixup']:
+                img, labels, segments = mixup(img, labels, segments, *self.load_mosaic(random.randint(0, self.n - 1)))
+
+        else:
+            # Load image
+            img, (h0, w0), (h, w) = self.load_image(index)
+
+            # Letterbox
+            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
+            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
+
+            labels = self.labels[index].copy()
+            # [array, array, ....], array.shape=(num_points, 2), xyxyxyxy
+            segments = self.segments[index].copy()
+            if len(segments):
+                for i_s in range(len(segments)):
+                    segments[i_s] = xyn2xy(
+                        segments[i_s],
+                        ratio[0] * w,
+                        ratio[1] * h,
+                        padw=pad[0],
+                        padh=pad[1],
+                    )
+            if labels.size:  # normalized xywh to pixel xyxy format
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+            if self.augment:
+                img, labels, segments = random_perspective(img,
+                                                           labels,
+                                                           segments=segments,
+                                                           degrees=hyp['degrees'],
+                                                           translate=hyp['translate'],
+                                                           scale=hyp['scale'],
+                                                           shear=hyp['shear'],
+                                                           perspective=hyp['perspective'])
+
+        nl = len(labels)  # number of labels
+        if nl:
+            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3)
+            if self.overlap:
+                masks, sorted_idx = polygons2masks_overlap(img.shape[:2],
+                                                           segments,
+                                                           downsample_ratio=self.downsample_ratio)
+                masks = masks[None]  # (640, 640) -> (1, 640, 640)
+                labels = labels[sorted_idx]
+            else:
+                masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio)
+
+        masks = (torch.from_numpy(masks) if len(masks) else torch.zeros(1 if self.overlap else nl, img.shape[0] //
+                                                                        self.downsample_ratio, img.shape[1] //
+                                                                        self.downsample_ratio))
+        # TODO: albumentations support
+        if self.augment:
+            # Albumentations
+            # there are some augmentation that won't change boxes and masks,
+            # so just be it for now.
+            img, labels = self.albumentations(img, labels)
+            nl = len(labels)  # update after albumentations
+
+            # HSV color-space
+            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+            # Flip up-down
+            if random.random() < hyp['flipud']:
+                img = np.flipud(img)
+                if nl:
+                    labels[:, 2] = 1 - labels[:, 2]
+                    masks = torch.flip(masks, dims=[1])
+
+            # Flip left-right
+            if random.random() < hyp['fliplr']:
+                img = np.fliplr(img)
+                if nl:
+                    labels[:, 1] = 1 - labels[:, 1]
+                    masks = torch.flip(masks, dims=[2])
+
+            # Cutouts  # labels = cutout(img, labels, p=0.5)
+
+        labels_out = torch.zeros((nl, 6))
+        if nl:
+            labels_out[:, 1:] = torch.from_numpy(labels)
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks)
+
+    def load_mosaic(self, index):
+        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
+        labels4, segments4 = [], []
+        s = self.img_size
+        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
+
+        # 3 additional image indices
+        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
+        for i, index in enumerate(indices):
+            # Load image
+            img, _, (h, w) = self.load_image(index)
+
+            # place img in img4
+            if i == 0:  # top left
+                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
+            elif i == 1:  # top right
+                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+            elif i == 2:  # bottom left
+                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+            elif i == 3:  # bottom right
+                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
+            padw = x1a - x1b
+            padh = y1a - y1b
+
+            labels, segments = self.labels[index].copy(), self.segments[index].copy()
+
+            if labels.size:
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
+                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+            labels4.append(labels)
+            segments4.extend(segments)
+
+        # Concat/clip labels
+        labels4 = np.concatenate(labels4, 0)
+        for x in (labels4[:, 1:], *segments4):
+            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+        # img4, labels4 = replicate(img4, labels4)  # replicate
+
+        # Augment
+        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
+        img4, labels4, segments4 = random_perspective(img4,
+                                                      labels4,
+                                                      segments4,
+                                                      degrees=self.hyp['degrees'],
+                                                      translate=self.hyp['translate'],
+                                                      scale=self.hyp['scale'],
+                                                      shear=self.hyp['shear'],
+                                                      perspective=self.hyp['perspective'],
+                                                      border=self.mosaic_border)  # border to remove
+        return img4, labels4, segments4
+
+    @staticmethod
+    def collate_fn(batch):
+        img, label, path, shapes, masks = zip(*batch)  # transposed
+        batched_masks = torch.cat(masks, 0)
+        for i, l in enumerate(label):
+            l[:, 0] = i  # add target image index for build_targets()
+        return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks
+
+
+def polygon2mask(img_size, polygons, color=1, downsample_ratio=1):
+    """
+    Args:
+        img_size (tuple): The image size.
+        polygons (np.ndarray): [N, M], N is the number of polygons,
+            M is the number of points(Be divided by 2).
+    """
+    mask = np.zeros(img_size, dtype=np.uint8)
+    polygons = np.asarray(polygons)
+    polygons = polygons.astype(np.int32)
+    shape = polygons.shape
+    polygons = polygons.reshape(shape[0], -1, 2)
+    cv2.fillPoly(mask, polygons, color=color)
+    nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio)
+    # NOTE: fillPoly firstly then resize is trying the keep the same way
+    # of loss calculation when mask-ratio=1.
+    mask = cv2.resize(mask, (nw, nh))
+    return mask
+
+
+def polygons2masks(img_size, polygons, color, downsample_ratio=1):
+    """
+    Args:
+        img_size (tuple): The image size.
+        polygons (list[np.ndarray]): each polygon is [N, M],
+            N is the number of polygons,
+            M is the number of points(Be divided by 2).
+    """
+    masks = []
+    for si in range(len(polygons)):
+        mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio)
+        masks.append(mask)
+    return np.array(masks)
+
+
+def polygons2masks_overlap(img_size, segments, downsample_ratio=1):
+    """Return a (640, 640) overlap mask."""
+    masks = np.zeros((img_size[0] // downsample_ratio, img_size[1] // downsample_ratio),
+                     dtype=np.int32 if len(segments) > 255 else np.uint8)
+    areas = []
+    ms = []
+    for si in range(len(segments)):
+        mask = polygon2mask(
+            img_size,
+            [segments[si].reshape(-1)],
+            downsample_ratio=downsample_ratio,
+            color=1,
+        )
+        ms.append(mask)
+        areas.append(mask.sum())
+    areas = np.asarray(areas)
+    index = np.argsort(-areas)
+    ms = np.array(ms)[index]
+    for i in range(len(segments)):
+        mask = ms[i] * (i + 1)
+        masks = masks + mask
+        masks = np.clip(masks, a_min=0, a_max=i + 1)
+    return masks, index