--- a
+++ b/utils/segment/augmentations.py
@@ -0,0 +1,104 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Image augmentation functions
+"""
+
+import math
+import random
+
+import cv2
+import numpy as np
+
+from ..augmentations import box_candidates
+from ..general import resample_segments, segment2box
+
+
+def mixup(im, labels, segments, im2, labels2, segments2):
+    # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
+    r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
+    im = (im * r + im2 * (1 - r)).astype(np.uint8)
+    labels = np.concatenate((labels, labels2), 0)
+    segments = np.concatenate((segments, segments2), 0)
+    return im, labels, segments
+
+
+def random_perspective(im,
+                       targets=(),
+                       segments=(),
+                       degrees=10,
+                       translate=.1,
+                       scale=.1,
+                       shear=10,
+                       perspective=0.0,
+                       border=(0, 0)):
+    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
+    # targets = [cls, xyxy]
+
+    height = im.shape[0] + border[0] * 2  # shape(h,w,c)
+    width = im.shape[1] + border[1] * 2
+
+    # Center
+    C = np.eye(3)
+    C[0, 2] = -im.shape[1] / 2  # x translation (pixels)
+    C[1, 2] = -im.shape[0] / 2  # y translation (pixels)
+
+    # Perspective
+    P = np.eye(3)
+    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
+    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)
+
+    # Rotation and Scale
+    R = np.eye(3)
+    a = random.uniform(-degrees, degrees)
+    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
+    s = random.uniform(1 - scale, 1 + scale)
+    # s = 2 ** random.uniform(-scale, scale)
+    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+    # Shear
+    S = np.eye(3)
+    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
+    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)
+
+    # Translation
+    T = np.eye(3)
+    T[0, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * width)  # x translation (pixels)
+    T[1, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * height)  # y translation (pixels)
+
+    # Combined rotation matrix
+    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
+    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
+        if perspective:
+            im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
+        else:  # affine
+            im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+    # Visualize
+    # import matplotlib.pyplot as plt
+    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+    # ax[0].imshow(im[:, :, ::-1])  # base
+    # ax[1].imshow(im2[:, :, ::-1])  # warped
+
+    # Transform label coordinates
+    n = len(targets)
+    new_segments = []
+    if n:
+        new = np.zeros((n, 4))
+        segments = resample_segments(segments)  # upsample
+        for i, segment in enumerate(segments):
+            xy = np.ones((len(segment), 3))
+            xy[:, :2] = segment
+            xy = xy @ M.T  # transform
+            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2])  # perspective rescale or affine
+
+            # clip
+            new[i] = segment2box(xy, width, height)
+            new_segments.append(xy)
+
+        # filter candidates
+        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01)
+        targets = targets[i]
+        targets[:, 1:5] = new[i]
+        new_segments = np.array(new_segments)[i]
+
+    return im, targets, new_segments