Diff of /utils/plots.py [000000] .. [190ca4]

Switch to side-by-side view

--- a
+++ b/utils/plots.py
@@ -0,0 +1,449 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Plotting utils
+"""
+
+import contextlib
+import math
+import os
+from copy import copy
+from pathlib import Path
+
+import cv2
+import matplotlib
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import seaborn as sn
+import torch
+from PIL import Image, ImageDraw
+from scipy.ndimage.filters import gaussian_filter1d
+from ultralytics.utils.plotting import Annotator
+
+from utils import TryExcept, threaded
+from utils.general import LOGGER, clip_boxes, increment_path, xywh2xyxy, xyxy2xywh
+from utils.metrics import fitness
+
+# Settings
+RANK = int(os.getenv('RANK', -1))
+matplotlib.rc('font', **{'size': 11})
+matplotlib.use('Agg')  # for writing to files only
+
+
+class Colors:
+    # Ultralytics color palette https://ultralytics.com/
+    def __init__(self):
+        # hex = matplotlib.colors.TABLEAU_COLORS.values()
+        hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
+                '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
+        self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
+        self.n = len(self.palette)
+
+    def __call__(self, i, bgr=False):
+        c = self.palette[int(i) % self.n]
+        return (c[2], c[1], c[0]) if bgr else c
+
+    @staticmethod
+    def hex2rgb(h):  # rgb order (PIL)
+        return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
+
+
+colors = Colors()  # create instance for 'from utils.plots import colors'
+
+
+def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
+    """
+    x:              Features to be visualized
+    module_type:    Module type
+    stage:          Module stage within model
+    n:              Maximum number of feature maps to plot
+    save_dir:       Directory to save results
+    """
+    if ('Detect'
+            not in module_type) and ('Segment'
+                                     not in module_type):  # 'Detect' for Object Detect task,'Segment' for Segment task
+        batch, channels, height, width = x.shape  # batch, channels, height, width
+        if height > 1 and width > 1:
+            #f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"
+            f = str(stage)+"_"+"features.png"   # filename
+
+            blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
+            n = min(n, channels)  # number of plots
+            fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
+            ax = ax.ravel()
+            plt.subplots_adjust(wspace=0.05, hspace=0.05)
+            for i in range(n):
+                ax[i].imshow(blocks[i].detach().numpy().squeeze()*256)  # cmap='gray'
+                ax[i].axis('off')
+
+            LOGGER.info(f'Saving {f}... ({n}/{channels})')
+            plt.savefig(f, dpi=300, bbox_inches='tight')
+            plt.close()
+            #np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy())  # npy save
+
+
+def hist2d(x, y, n=100):
+    # 2d histogram used in labels.png and evolve.png
+    xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
+    hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
+    xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
+    yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
+    return np.log(hist[xidx, yidx])
+
+
+def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
+    from scipy.signal import butter, filtfilt
+
+    # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
+    def butter_lowpass(cutoff, fs, order):
+        nyq = 0.5 * fs
+        normal_cutoff = cutoff / nyq
+        return butter(order, normal_cutoff, btype='low', analog=False)
+
+    b, a = butter_lowpass(cutoff, fs, order=order)
+    return filtfilt(b, a, data)  # forward-backward filter
+
+
+def output_to_target(output, max_det=300):
+    # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
+    targets = []
+    for i, o in enumerate(output):
+        box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
+        j = torch.full((conf.shape[0], 1), i)
+        targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
+    return torch.cat(targets, 0).numpy()
+
+
+@threaded
+def plot_images(images, targets, paths=None, fname='images.jpg', names=None):
+    # Plot image grid with labels
+    if isinstance(images, torch.Tensor):
+        images = images.cpu().float().numpy()
+    if isinstance(targets, torch.Tensor):
+        targets = targets.cpu().numpy()
+
+    max_size = 1920  # max image size
+    max_subplots = 16  # max image subplots, i.e. 4x4
+    bs, _, h, w = images.shape  # batch size, _, height, width
+    bs = min(bs, max_subplots)  # limit plot images
+    ns = np.ceil(bs ** 0.5)  # number of subplots (square)
+    if np.max(images[0]) <= 1:
+        images *= 255  # de-normalise (optional)
+
+    # Build Image
+    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
+    for i, im in enumerate(images):
+        if i == max_subplots:  # if last batch has fewer images than we expect
+            break
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        im = im.transpose(1, 2, 0)
+        mosaic[y:y + h, x:x + w, :] = im
+
+    # Resize (optional)
+    scale = max_size / ns / max(h, w)
+    if scale < 1:
+        h = math.ceil(scale * h)
+        w = math.ceil(scale * w)
+        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
+
+    # Annotate
+    fs = int((h + w) * ns * 0.01)  # font size
+    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
+    for i in range(i + 1):
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
+        if paths:
+            annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
+        if len(targets) > 0:
+            ti = targets[targets[:, 0] == i]  # image targets
+            boxes = xywh2xyxy(ti[:, 2:6]).T
+            classes = ti[:, 1].astype('int')
+            labels = ti.shape[1] == 6  # labels if no conf column
+            conf = None if labels else ti[:, 6]  # check for confidence presence (label vs pred)
+
+            if boxes.shape[1]:
+                if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
+                    boxes[[0, 2]] *= w  # scale to pixels
+                    boxes[[1, 3]] *= h
+                elif scale < 1:  # absolute coords need scale if image scales
+                    boxes *= scale
+            boxes[[0, 2]] += x
+            boxes[[1, 3]] += y
+            for j, box in enumerate(boxes.T.tolist()):
+                cls = classes[j]
+                color = colors(cls)
+                cls = names[cls] if names else cls
+                if labels or conf[j] > 0.25:  # 0.25 conf thresh
+                    label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
+                    annotator.box_label(box, label, color=color)
+    annotator.im.save(fname)  # save
+
+
+def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
+    # Plot LR simulating training for full epochs
+    optimizer, scheduler = copy(optimizer), copy(scheduler)  # do not modify originals
+    y = []
+    for _ in range(epochs):
+        scheduler.step()
+        y.append(optimizer.param_groups[0]['lr'])
+    plt.plot(y, '.-', label='LR')
+    plt.xlabel('epoch')
+    plt.ylabel('LR')
+    plt.grid()
+    plt.xlim(0, epochs)
+    plt.ylim(0)
+    plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
+    plt.close()
+
+
+def plot_val_txt():  # from utils.plots import *; plot_val()
+    # Plot val.txt histograms
+    x = np.loadtxt('val.txt', dtype=np.float32)
+    box = xyxy2xywh(x[:, :4])
+    cx, cy = box[:, 0], box[:, 1]
+
+    fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
+    ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
+    ax.set_aspect('equal')
+    plt.savefig('hist2d.png', dpi=300)
+
+    fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
+    ax[0].hist(cx, bins=600)
+    ax[1].hist(cy, bins=600)
+    plt.savefig('hist1d.png', dpi=200)
+
+
+def plot_targets_txt():  # from utils.plots import *; plot_targets_txt()
+    # Plot targets.txt histograms
+    x = np.loadtxt('targets.txt', dtype=np.float32).T
+    s = ['x targets', 'y targets', 'width targets', 'height targets']
+    fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
+    ax = ax.ravel()
+    for i in range(4):
+        ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
+        ax[i].legend()
+        ax[i].set_title(s[i])
+    plt.savefig('targets.jpg', dpi=200)
+
+
+def plot_val_study(file='', dir='', x=None):  # from utils.plots import *; plot_val_study()
+    # Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
+    save_dir = Path(file).parent if file else Path(dir)
+    plot2 = False  # plot additional results
+    if plot2:
+        ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
+
+    fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
+    # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
+    for f in sorted(save_dir.glob('study*.txt')):
+        y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
+        x = np.arange(y.shape[1]) if x is None else np.array(x)
+        if plot2:
+            s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
+            for i in range(7):
+                ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
+                ax[i].set_title(s[i])
+
+        j = y[3].argmax() + 1
+        ax2.plot(y[5, 1:j],
+                 y[3, 1:j] * 1E2,
+                 '.-',
+                 linewidth=2,
+                 markersize=8,
+                 label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
+
+    ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
+             'k.-',
+             linewidth=2,
+             markersize=8,
+             alpha=.25,
+             label='EfficientDet')
+
+    ax2.grid(alpha=0.2)
+    ax2.set_yticks(np.arange(20, 60, 5))
+    ax2.set_xlim(0, 57)
+    ax2.set_ylim(25, 55)
+    ax2.set_xlabel('GPU Speed (ms/img)')
+    ax2.set_ylabel('COCO AP val')
+    ax2.legend(loc='lower right')
+    f = save_dir / 'study.png'
+    print(f'Saving {f}...')
+    plt.savefig(f, dpi=300)
+
+
+@TryExcept()  # known issue https://github.com/ultralytics/yolov5/issues/5395
+def plot_labels(labels, names=(), save_dir=Path('')):
+    # plot dataset labels
+    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
+    c, b = labels[:, 0], labels[:, 1:].transpose()  # classes, boxes
+    nc = int(c.max() + 1)  # number of classes
+    x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
+
+    # seaborn correlogram
+    sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
+    plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
+    plt.close()
+
+    # matplotlib labels
+    matplotlib.use('svg')  # faster
+    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
+    y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
+    with contextlib.suppress(Exception):  # color histogram bars by class
+        [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)]  # known issue #3195
+    ax[0].set_ylabel('instances')
+    if 0 < len(names) < 30:
+        ax[0].set_xticks(range(len(names)))
+        ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
+    else:
+        ax[0].set_xlabel('classes')
+    sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
+    sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
+
+    # rectangles
+    labels[:, 1:3] = 0.5  # center
+    labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
+    img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
+    for cls, *box in labels[:1000]:
+        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
+    ax[1].imshow(img)
+    ax[1].axis('off')
+
+    for a in [0, 1, 2, 3]:
+        for s in ['top', 'right', 'left', 'bottom']:
+            ax[a].spines[s].set_visible(False)
+
+    plt.savefig(save_dir / 'labels.jpg', dpi=200)
+    matplotlib.use('Agg')
+    plt.close()
+
+
+def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path('images.jpg')):
+    # Show classification image grid with labels (optional) and predictions (optional)
+    from utils.augmentations import denormalize
+
+    names = names or [f'class{i}' for i in range(1000)]
+    blocks = torch.chunk(denormalize(im.clone()).cpu().float(), len(im),
+                         dim=0)  # select batch index 0, block by channels
+    n = min(len(blocks), nmax)  # number of plots
+    m = min(8, round(n ** 0.5))  # 8 x 8 default
+    fig, ax = plt.subplots(math.ceil(n / m), m)  # 8 rows x n/8 cols
+    ax = ax.ravel() if m > 1 else [ax]
+    # plt.subplots_adjust(wspace=0.05, hspace=0.05)
+    for i in range(n):
+        ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
+        ax[i].axis('off')
+        if labels is not None:
+            s = names[labels[i]] + (f'—{names[pred[i]]}' if pred is not None else '')
+            ax[i].set_title(s, fontsize=8, verticalalignment='top')
+    plt.savefig(f, dpi=300, bbox_inches='tight')
+    plt.close()
+    if verbose:
+        LOGGER.info(f'Saving {f}')
+        if labels is not None:
+            LOGGER.info('True:     ' + ' '.join(f'{names[i]:3s}' for i in labels[:nmax]))
+        if pred is not None:
+            LOGGER.info('Predicted:' + ' '.join(f'{names[i]:3s}' for i in pred[:nmax]))
+    return f
+
+
+def plot_evolve(evolve_csv='path/to/evolve.csv'):  # from utils.plots import *; plot_evolve()
+    # Plot evolve.csv hyp evolution results
+    evolve_csv = Path(evolve_csv)
+    data = pd.read_csv(evolve_csv)
+    keys = [x.strip() for x in data.columns]
+    x = data.values
+    f = fitness(x)
+    j = np.argmax(f)  # max fitness index
+    plt.figure(figsize=(10, 12), tight_layout=True)
+    matplotlib.rc('font', **{'size': 8})
+    print(f'Best results from row {j} of {evolve_csv}:')
+    for i, k in enumerate(keys[7:]):
+        v = x[:, 7 + i]
+        mu = v[j]  # best single result
+        plt.subplot(6, 5, i + 1)
+        plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
+        plt.plot(mu, f.max(), 'k+', markersize=15)
+        plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9})  # limit to 40 characters
+        if i % 5 != 0:
+            plt.yticks([])
+        print(f'{k:>15}: {mu:.3g}')
+    f = evolve_csv.with_suffix('.png')  # filename
+    plt.savefig(f, dpi=200)
+    plt.close()
+    print(f'Saved {f}')
+
+
+def plot_results(file='path/to/results.csv', dir=''):
+    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
+    save_dir = Path(file).parent if file else Path(dir)
+    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
+    ax = ax.ravel()
+    files = list(save_dir.glob('results*.csv'))
+    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
+    for f in files:
+        try:
+            data = pd.read_csv(f)
+            s = [x.strip() for x in data.columns]
+            x = data.values[:, 0]
+            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
+                y = data.values[:, j].astype('float')
+                # y[y == 0] = np.nan  # don't show zero values
+                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)  # actual results
+                ax[i].plot(x, gaussian_filter1d(y, sigma=3), ':', label='smooth', linewidth=2)  # smoothing line
+                ax[i].set_title(s[j], fontsize=12)
+                # if j in [8, 9, 10]:  # share train and val loss y axes
+                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+        except Exception as e:
+            LOGGER.info(f'Warning: Plotting error for {f}: {e}')
+    ax[1].legend()
+    fig.savefig(save_dir / 'results.png', dpi=200)
+    plt.close()
+
+
+def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
+    # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
+    ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
+    s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
+    files = list(Path(save_dir).glob('frames*.txt'))
+    for fi, f in enumerate(files):
+        try:
+            results = np.loadtxt(f, ndmin=2).T[:, 90:-30]  # clip first and last rows
+            n = results.shape[1]  # number of rows
+            x = np.arange(start, min(stop, n) if stop else n)
+            results = results[:, x]
+            t = (results[0] - results[0].min())  # set t0=0s
+            results[0] = x
+            for i, a in enumerate(ax):
+                if i < len(results):
+                    label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
+                    a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
+                    a.set_title(s[i])
+                    a.set_xlabel('time (s)')
+                    # if fi == len(files) - 1:
+                    #     a.set_ylim(bottom=0)
+                    for side in ['top', 'right']:
+                        a.spines[side].set_visible(False)
+                else:
+                    a.remove()
+        except Exception as e:
+            print(f'Warning: Plotting error for {f}; {e}')
+    ax[1].legend()
+    plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
+
+
+def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
+    # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
+    xyxy = torch.tensor(xyxy).view(-1, 4)
+    b = xyxy2xywh(xyxy)  # boxes
+    if square:
+        b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
+    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
+    xyxy = xywh2xyxy(b).long()
+    clip_boxes(xyxy, im.shape)
+    crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
+    if save:
+        file.parent.mkdir(parents=True, exist_ok=True)  # make directory
+        f = str(increment_path(file).with_suffix('.jpg'))
+        # cv2.imwrite(f, crop)  # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
+        Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0)  # save RGB
+    return crop