|
a |
|
b/utils/metrics.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Model validation metrics |
|
|
4 |
""" |
|
|
5 |
|
|
|
6 |
import math |
|
|
7 |
import warnings |
|
|
8 |
from pathlib import Path |
|
|
9 |
|
|
|
10 |
import matplotlib.pyplot as plt |
|
|
11 |
import numpy as np |
|
|
12 |
import torch |
|
|
13 |
|
|
|
14 |
from utils import TryExcept, threaded |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
def fitness(x): |
|
|
18 |
# Model fitness as a weighted combination of metrics |
|
|
19 |
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] |
|
|
20 |
return (x[:, :4] * w).sum(1) |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
def smooth(y, f=0.05): |
|
|
24 |
# Box filter of fraction f |
|
|
25 |
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd) |
|
|
26 |
p = np.ones(nf // 2) # ones padding |
|
|
27 |
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded |
|
|
28 |
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=''): |
|
|
32 |
""" Compute the average precision, given the recall and precision curves. |
|
|
33 |
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. |
|
|
34 |
# Arguments |
|
|
35 |
tp: True positives (nparray, nx1 or nx10). |
|
|
36 |
conf: Objectness value from 0-1 (nparray). |
|
|
37 |
pred_cls: Predicted object classes (nparray). |
|
|
38 |
target_cls: True object classes (nparray). |
|
|
39 |
plot: Plot precision-recall curve at mAP@0.5 |
|
|
40 |
save_dir: Plot save directory |
|
|
41 |
# Returns |
|
|
42 |
The average precision as computed in py-faster-rcnn. |
|
|
43 |
""" |
|
|
44 |
|
|
|
45 |
# Sort by objectness |
|
|
46 |
i = np.argsort(-conf) |
|
|
47 |
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] |
|
|
48 |
|
|
|
49 |
# Find unique classes |
|
|
50 |
unique_classes, nt = np.unique(target_cls, return_counts=True) |
|
|
51 |
nc = unique_classes.shape[0] # number of classes, number of detections |
|
|
52 |
|
|
|
53 |
# Create Precision-Recall curve and compute AP for each class |
|
|
54 |
px, py = np.linspace(0, 1, 1000), [] # for plotting |
|
|
55 |
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) |
|
|
56 |
for ci, c in enumerate(unique_classes): |
|
|
57 |
i = pred_cls == c |
|
|
58 |
n_l = nt[ci] # number of labels |
|
|
59 |
n_p = i.sum() # number of predictions |
|
|
60 |
if n_p == 0 or n_l == 0: |
|
|
61 |
continue |
|
|
62 |
|
|
|
63 |
# Accumulate FPs and TPs |
|
|
64 |
fpc = (1 - tp[i]).cumsum(0) |
|
|
65 |
tpc = tp[i].cumsum(0) |
|
|
66 |
|
|
|
67 |
# Recall |
|
|
68 |
recall = tpc / (n_l + eps) # recall curve |
|
|
69 |
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases |
|
|
70 |
|
|
|
71 |
# Precision |
|
|
72 |
precision = tpc / (tpc + fpc) # precision curve |
|
|
73 |
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score |
|
|
74 |
|
|
|
75 |
# AP from recall-precision curve |
|
|
76 |
for j in range(tp.shape[1]): |
|
|
77 |
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) |
|
|
78 |
if plot and j == 0: |
|
|
79 |
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 |
|
|
80 |
|
|
|
81 |
# Compute F1 (harmonic mean of precision and recall) |
|
|
82 |
f1 = 2 * p * r / (p + r + eps) |
|
|
83 |
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data |
|
|
84 |
names = dict(enumerate(names)) # to dict |
|
|
85 |
if plot: |
|
|
86 |
plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names) |
|
|
87 |
plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1') |
|
|
88 |
plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision') |
|
|
89 |
plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall') |
|
|
90 |
|
|
|
91 |
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index |
|
|
92 |
p, r, f1 = p[:, i], r[:, i], f1[:, i] |
|
|
93 |
tp = (r * nt).round() # true positives |
|
|
94 |
fp = (tp / (p + eps) - tp).round() # false positives |
|
|
95 |
return tp, fp, p, r, f1, ap, unique_classes.astype(int) |
|
|
96 |
|
|
|
97 |
|
|
|
98 |
def compute_ap(recall, precision): |
|
|
99 |
""" Compute the average precision, given the recall and precision curves |
|
|
100 |
# Arguments |
|
|
101 |
recall: The recall curve (list) |
|
|
102 |
precision: The precision curve (list) |
|
|
103 |
# Returns |
|
|
104 |
Average precision, precision curve, recall curve |
|
|
105 |
""" |
|
|
106 |
|
|
|
107 |
# Append sentinel values to beginning and end |
|
|
108 |
mrec = np.concatenate(([0.0], recall, [1.0])) |
|
|
109 |
mpre = np.concatenate(([1.0], precision, [0.0])) |
|
|
110 |
|
|
|
111 |
# Compute the precision envelope |
|
|
112 |
mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) |
|
|
113 |
|
|
|
114 |
# Integrate area under curve |
|
|
115 |
method = 'interp' # methods: 'continuous', 'interp' |
|
|
116 |
if method == 'interp': |
|
|
117 |
x = np.linspace(0, 1, 101) # 101-point interp (COCO) |
|
|
118 |
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate |
|
|
119 |
else: # 'continuous' |
|
|
120 |
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes |
|
|
121 |
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve |
|
|
122 |
|
|
|
123 |
return ap, mpre, mrec |
|
|
124 |
|
|
|
125 |
|
|
|
126 |
class ConfusionMatrix: |
|
|
127 |
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix |
|
|
128 |
def __init__(self, nc, conf=0.25, iou_thres=0.45): |
|
|
129 |
self.matrix = np.zeros((nc + 1, nc + 1)) |
|
|
130 |
self.nc = nc # number of classes |
|
|
131 |
self.conf = conf |
|
|
132 |
self.iou_thres = iou_thres |
|
|
133 |
|
|
|
134 |
def process_batch(self, detections, labels): |
|
|
135 |
""" |
|
|
136 |
Return intersection-over-union (Jaccard index) of boxes. |
|
|
137 |
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|
|
138 |
Arguments: |
|
|
139 |
detections (Array[N, 6]), x1, y1, x2, y2, conf, class |
|
|
140 |
labels (Array[M, 5]), class, x1, y1, x2, y2 |
|
|
141 |
Returns: |
|
|
142 |
None, updates confusion matrix accordingly |
|
|
143 |
""" |
|
|
144 |
if detections is None: |
|
|
145 |
gt_classes = labels.int() |
|
|
146 |
for gc in gt_classes: |
|
|
147 |
self.matrix[self.nc, gc] += 1 # background FN |
|
|
148 |
return |
|
|
149 |
|
|
|
150 |
detections = detections[detections[:, 4] > self.conf] |
|
|
151 |
gt_classes = labels[:, 0].int() |
|
|
152 |
detection_classes = detections[:, 5].int() |
|
|
153 |
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
|
154 |
|
|
|
155 |
x = torch.where(iou > self.iou_thres) |
|
|
156 |
if x[0].shape[0]: |
|
|
157 |
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() |
|
|
158 |
if x[0].shape[0] > 1: |
|
|
159 |
matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
160 |
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
|
161 |
matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
162 |
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
|
163 |
else: |
|
|
164 |
matches = np.zeros((0, 3)) |
|
|
165 |
|
|
|
166 |
n = matches.shape[0] > 0 |
|
|
167 |
m0, m1, _ = matches.transpose().astype(int) |
|
|
168 |
for i, gc in enumerate(gt_classes): |
|
|
169 |
j = m0 == i |
|
|
170 |
if n and sum(j) == 1: |
|
|
171 |
self.matrix[detection_classes[m1[j]], gc] += 1 # correct |
|
|
172 |
else: |
|
|
173 |
self.matrix[self.nc, gc] += 1 # true background |
|
|
174 |
|
|
|
175 |
if n: |
|
|
176 |
for i, dc in enumerate(detection_classes): |
|
|
177 |
if not any(m1 == i): |
|
|
178 |
self.matrix[dc, self.nc] += 1 # predicted background |
|
|
179 |
|
|
|
180 |
def tp_fp(self): |
|
|
181 |
tp = self.matrix.diagonal() # true positives |
|
|
182 |
fp = self.matrix.sum(1) - tp # false positives |
|
|
183 |
# fn = self.matrix.sum(0) - tp # false negatives (missed detections) |
|
|
184 |
return tp[:-1], fp[:-1] # remove background class |
|
|
185 |
|
|
|
186 |
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure') |
|
|
187 |
def plot(self, normalize=True, save_dir='', names=()): |
|
|
188 |
import seaborn as sn |
|
|
189 |
|
|
|
190 |
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns |
|
|
191 |
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) |
|
|
192 |
|
|
|
193 |
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True) |
|
|
194 |
nc, nn = self.nc, len(names) # number of classes, names |
|
|
195 |
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size |
|
|
196 |
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels |
|
|
197 |
ticklabels = (names + ['background']) if labels else 'auto' |
|
|
198 |
with warnings.catch_warnings(): |
|
|
199 |
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered |
|
|
200 |
sn.heatmap(array, |
|
|
201 |
ax=ax, |
|
|
202 |
annot=nc < 30, |
|
|
203 |
annot_kws={ |
|
|
204 |
'size': 8}, |
|
|
205 |
cmap='Blues', |
|
|
206 |
fmt='.2f', |
|
|
207 |
square=True, |
|
|
208 |
vmin=0.0, |
|
|
209 |
xticklabels=ticklabels, |
|
|
210 |
yticklabels=ticklabels).set_facecolor((1, 1, 1)) |
|
|
211 |
ax.set_xlabel('True') |
|
|
212 |
ax.set_ylabel('Predicted') |
|
|
213 |
ax.set_title('Confusion Matrix') |
|
|
214 |
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) |
|
|
215 |
plt.close(fig) |
|
|
216 |
|
|
|
217 |
def print(self): |
|
|
218 |
for i in range(self.nc + 1): |
|
|
219 |
print(' '.join(map(str, self.matrix[i]))) |
|
|
220 |
|
|
|
221 |
|
|
|
222 |
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): |
|
|
223 |
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4) |
|
|
224 |
|
|
|
225 |
# Get the coordinates of bounding boxes |
|
|
226 |
if xywh: # transform from xywh to xyxy |
|
|
227 |
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) |
|
|
228 |
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 |
|
|
229 |
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ |
|
|
230 |
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ |
|
|
231 |
else: # x1, y1, x2, y2 = box1 |
|
|
232 |
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) |
|
|
233 |
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) |
|
|
234 |
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps) |
|
|
235 |
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps) |
|
|
236 |
|
|
|
237 |
# Intersection area |
|
|
238 |
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \ |
|
|
239 |
(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0) |
|
|
240 |
|
|
|
241 |
# Union Area |
|
|
242 |
union = w1 * h1 + w2 * h2 - inter + eps |
|
|
243 |
|
|
|
244 |
# IoU |
|
|
245 |
iou = inter / union |
|
|
246 |
if CIoU or DIoU or GIoU: |
|
|
247 |
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width |
|
|
248 |
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height |
|
|
249 |
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 |
|
|
250 |
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared |
|
|
251 |
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 |
|
|
252 |
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 |
|
|
253 |
v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) |
|
|
254 |
with torch.no_grad(): |
|
|
255 |
alpha = v / (v - iou + (1 + eps)) |
|
|
256 |
return iou - (rho2 / c2 + v * alpha) # CIoU |
|
|
257 |
return iou - rho2 / c2 # DIoU |
|
|
258 |
c_area = cw * ch + eps # convex area |
|
|
259 |
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf |
|
|
260 |
return iou # IoU |
|
|
261 |
|
|
|
262 |
|
|
|
263 |
def box_iou(box1, box2, eps=1e-7): |
|
|
264 |
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py |
|
|
265 |
""" |
|
|
266 |
Return intersection-over-union (Jaccard index) of boxes. |
|
|
267 |
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|
|
268 |
Arguments: |
|
|
269 |
box1 (Tensor[N, 4]) |
|
|
270 |
box2 (Tensor[M, 4]) |
|
|
271 |
Returns: |
|
|
272 |
iou (Tensor[N, M]): the NxM matrix containing the pairwise |
|
|
273 |
IoU values for every element in boxes1 and boxes2 |
|
|
274 |
""" |
|
|
275 |
|
|
|
276 |
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) |
|
|
277 |
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2) |
|
|
278 |
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2) |
|
|
279 |
|
|
|
280 |
# IoU = inter / (area1 + area2 - inter) |
|
|
281 |
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps) |
|
|
282 |
|
|
|
283 |
|
|
|
284 |
def bbox_ioa(box1, box2, eps=1e-7): |
|
|
285 |
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2 |
|
|
286 |
box1: np.array of shape(4) |
|
|
287 |
box2: np.array of shape(nx4) |
|
|
288 |
returns: np.array of shape(n) |
|
|
289 |
""" |
|
|
290 |
|
|
|
291 |
# Get the coordinates of bounding boxes |
|
|
292 |
b1_x1, b1_y1, b1_x2, b1_y2 = box1 |
|
|
293 |
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T |
|
|
294 |
|
|
|
295 |
# Intersection area |
|
|
296 |
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ |
|
|
297 |
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) |
|
|
298 |
|
|
|
299 |
# box2 area |
|
|
300 |
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps |
|
|
301 |
|
|
|
302 |
# Intersection over box2 area |
|
|
303 |
return inter_area / box2_area |
|
|
304 |
|
|
|
305 |
|
|
|
306 |
def wh_iou(wh1, wh2, eps=1e-7): |
|
|
307 |
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 |
|
|
308 |
wh1 = wh1[:, None] # [N,1,2] |
|
|
309 |
wh2 = wh2[None] # [1,M,2] |
|
|
310 |
inter = torch.min(wh1, wh2).prod(2) # [N,M] |
|
|
311 |
return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter) |
|
|
312 |
|
|
|
313 |
|
|
|
314 |
# Plots ---------------------------------------------------------------------------------------------------------------- |
|
|
315 |
|
|
|
316 |
|
|
|
317 |
@threaded |
|
|
318 |
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()): |
|
|
319 |
# Precision-recall curve |
|
|
320 |
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) |
|
|
321 |
py = np.stack(py, axis=1) |
|
|
322 |
|
|
|
323 |
if 0 < len(names) < 21: # display per-class legend if < 21 classes |
|
|
324 |
for i, y in enumerate(py.T): |
|
|
325 |
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision) |
|
|
326 |
else: |
|
|
327 |
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) |
|
|
328 |
|
|
|
329 |
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) |
|
|
330 |
ax.set_xlabel('Recall') |
|
|
331 |
ax.set_ylabel('Precision') |
|
|
332 |
ax.set_xlim(0, 1) |
|
|
333 |
ax.set_ylim(0, 1) |
|
|
334 |
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left') |
|
|
335 |
ax.set_title('Precision-Recall Curve') |
|
|
336 |
fig.savefig(save_dir, dpi=250) |
|
|
337 |
plt.close(fig) |
|
|
338 |
|
|
|
339 |
|
|
|
340 |
@threaded |
|
|
341 |
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'): |
|
|
342 |
# Metric-confidence curve |
|
|
343 |
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) |
|
|
344 |
|
|
|
345 |
if 0 < len(names) < 21: # display per-class legend if < 21 classes |
|
|
346 |
for i, y in enumerate(py): |
|
|
347 |
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric) |
|
|
348 |
else: |
|
|
349 |
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric) |
|
|
350 |
|
|
|
351 |
y = smooth(py.mean(0), 0.05) |
|
|
352 |
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') |
|
|
353 |
ax.set_xlabel(xlabel) |
|
|
354 |
ax.set_ylabel(ylabel) |
|
|
355 |
ax.set_xlim(0, 1) |
|
|
356 |
ax.set_ylim(0, 1) |
|
|
357 |
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left') |
|
|
358 |
ax.set_title(f'{ylabel}-Confidence Curve') |
|
|
359 |
fig.savefig(save_dir, dpi=250) |
|
|
360 |
plt.close(fig) |