Diff of /utils/loss.py [000000] .. [190ca4]

Switch to side-by-side view

--- a
+++ b/utils/loss.py
@@ -0,0 +1,234 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Loss functions
+"""
+
+import torch
+import torch.nn as nn
+
+from utils.metrics import bbox_iou
+from utils.torch_utils import de_parallel
+
+
+def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+    # return positive, negative label smoothing BCE targets
+    return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class BCEBlurWithLogitsLoss(nn.Module):
+    # BCEwithLogitLoss() with reduced missing label effects.
+    def __init__(self, alpha=0.05):
+        super().__init__()
+        self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')  # must be nn.BCEWithLogitsLoss()
+        self.alpha = alpha
+
+    def forward(self, pred, true):
+        loss = self.loss_fcn(pred, true)
+        pred = torch.sigmoid(pred)  # prob from logits
+        dx = pred - true  # reduce only missing label effects
+        # dx = (pred - true).abs()  # reduce missing label and false label effects
+        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
+        loss *= alpha_factor
+        return loss.mean()
+
+
+class FocalLoss(nn.Module):
+    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+        super().__init__()
+        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
+        self.gamma = gamma
+        self.alpha = alpha
+        self.reduction = loss_fcn.reduction
+        self.loss_fcn.reduction = 'none'  # required to apply FL to each element
+
+    def forward(self, pred, true):
+        loss = self.loss_fcn(pred, true)
+        # p_t = torch.exp(-loss)
+        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability
+
+        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+        pred_prob = torch.sigmoid(pred)  # prob from logits
+        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+        modulating_factor = (1.0 - p_t) ** self.gamma
+        loss *= alpha_factor * modulating_factor
+
+        if self.reduction == 'mean':
+            return loss.mean()
+        elif self.reduction == 'sum':
+            return loss.sum()
+        else:  # 'none'
+            return loss
+
+
+class QFocalLoss(nn.Module):
+    # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+        super().__init__()
+        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
+        self.gamma = gamma
+        self.alpha = alpha
+        self.reduction = loss_fcn.reduction
+        self.loss_fcn.reduction = 'none'  # required to apply FL to each element
+
+    def forward(self, pred, true):
+        loss = self.loss_fcn(pred, true)
+
+        pred_prob = torch.sigmoid(pred)  # prob from logits
+        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+        modulating_factor = torch.abs(true - pred_prob) ** self.gamma
+        loss *= alpha_factor * modulating_factor
+
+        if self.reduction == 'mean':
+            return loss.mean()
+        elif self.reduction == 'sum':
+            return loss.sum()
+        else:  # 'none'
+            return loss
+
+
+class ComputeLoss:
+    sort_obj_iou = False
+
+    # Compute losses
+    def __init__(self, model, autobalance=False):
+        device = next(model.parameters()).device  # get model device
+        h = model.hyp  # hyperparameters
+
+        # Define criteria
+        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+
+        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+        self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets
+
+        # Focal loss
+        g = h['fl_gamma']  # focal loss gamma
+        if g > 0:
+            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+        m = de_parallel(model).model[-1]  # Detect() module
+        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
+        self.ssi = list(m.stride).index(16) if autobalance else 0  # stride 16 index
+        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
+        self.na = m.na  # number of anchors
+        self.nc = m.nc  # number of classes
+        self.nl = m.nl  # number of layers
+        self.anchors = m.anchors
+        self.device = device
+
+    def __call__(self, p, targets):  # predictions, targets
+        lcls = torch.zeros(1, device=self.device)  # class loss
+        lbox = torch.zeros(1, device=self.device)  # box loss
+        lobj = torch.zeros(1, device=self.device)  # object loss
+        tcls, tbox, indices, anchors = self.build_targets(p, targets)  # targets
+
+        # Losses
+        for i, pi in enumerate(p):  # layer index, layer predictions
+            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
+            tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device)  # target obj
+
+            n = b.shape[0]  # number of targets
+            if n:
+                # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1)  # faster, requires torch 1.8.0
+                pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1)  # target-subset of predictions
+
+                # Regression
+                pxy = pxy.sigmoid() * 2 - 0.5
+                pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
+                pbox = torch.cat((pxy, pwh), 1)  # predicted box
+                iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze()  # iou(prediction, target)
+                lbox += (1.0 - iou).mean()  # iou loss
+
+                # Objectness
+                iou = iou.detach().clamp(0).type(tobj.dtype)
+                if self.sort_obj_iou:
+                    j = iou.argsort()
+                    b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
+                if self.gr < 1:
+                    iou = (1.0 - self.gr) + self.gr * iou
+                tobj[b, a, gj, gi] = iou  # iou ratio
+
+                # Classification
+                if self.nc > 1:  # cls loss (only if multiple classes)
+                    t = torch.full_like(pcls, self.cn, device=self.device)  # targets
+                    t[range(n), tcls[i]] = self.cp
+                    lcls += self.BCEcls(pcls, t)  # BCE
+
+                # Append targets to text file
+                # with open('targets.txt', 'a') as file:
+                #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
+
+            obji = self.BCEobj(pi[..., 4], tobj)
+            lobj += obji * self.balance[i]  # obj loss
+            if self.autobalance:
+                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+        if self.autobalance:
+            self.balance = [x / self.balance[self.ssi] for x in self.balance]
+        lbox *= self.hyp['box']
+        lobj *= self.hyp['obj']
+        lcls *= self.hyp['cls']
+        bs = tobj.shape[0]  # batch size
+
+        return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
+
+    def build_targets(self, p, targets):
+        # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+        na, nt = self.na, targets.shape[0]  # number of anchors, targets
+        tcls, tbox, indices, anch = [], [], [], []
+        gain = torch.ones(7, device=self.device)  # normalized to gridspace gain #
+        ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
+        targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2)  # append anchor indices
+
+        g = 0.5  # bias
+        off = torch.tensor(
+            [
+                [0, 0],
+                [1, 0],
+                [0, 1],
+                [-1, 0],
+                [0, -1],  # j,k,l,m
+                # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
+            ],
+            device=self.device).float() * g  # offsets
+
+        for i in range(self.nl):
+            anchors, shape = self.anchors[i], p[i].shape
+            gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]]  # xyxy gain
+
+            # Match targets to anchors
+            t = targets * gain  # shape(3,n,7)
+            if nt:
+                # Matches
+                r = t[..., 4:6] / anchors[:, None]  # wh ratio
+                j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t']  # compare
+                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+                t = t[j]  # filter
+
+                # Offsets
+                gxy = t[:, 2:4]  # grid xy
+                gxi = gain[[2, 3]] - gxy  # inverse
+                j, k = ((gxy % 1 < g) & (gxy > 1)).T
+                l, m = ((gxi % 1 < g) & (gxi > 1)).T
+                j = torch.stack((torch.ones_like(j), j, k, l, m))
+                t = t.repeat((5, 1, 1))[j]
+                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+            else:
+                t = targets[0]
+                offsets = 0
+
+            # Define
+            bc, gxy, gwh, a = t.chunk(4, 1)  # (image, class), grid xy, grid wh, anchors
+            a, (b, c) = a.long().view(-1), bc.long().T  # anchors, image, class
+            gij = (gxy - offsets).long()
+            gi, gj = gij.T  # grid indices
+
+            # Append
+            indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))  # image, anchor, grid
+            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
+            anch.append(anchors[a])  # anchors
+            tcls.append(c)  # class
+
+        return tcls, tbox, indices, anch