a b/utils/loggers/comet/hpo.py
1
import argparse
2
import json
3
import logging
4
import os
5
import sys
6
from pathlib import Path
7
8
import comet_ml
9
10
logger = logging.getLogger(__name__)
11
12
FILE = Path(__file__).resolve()
13
ROOT = FILE.parents[3]  # YOLOv5 root directory
14
if str(ROOT) not in sys.path:
15
    sys.path.append(str(ROOT))  # add ROOT to PATH
16
17
from train import train
18
from utils.callbacks import Callbacks
19
from utils.general import increment_path
20
from utils.torch_utils import select_device
21
22
# Project Configuration
23
config = comet_ml.config.get_config()
24
COMET_PROJECT_NAME = config.get_string(os.getenv('COMET_PROJECT_NAME'), 'comet.project_name', default='yolov5')
25
26
27
def get_args(known=False):
28
    parser = argparse.ArgumentParser()
29
    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
30
    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
31
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
32
    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
33
    parser.add_argument('--epochs', type=int, default=300, help='total training epochs')
34
    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
35
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
36
    parser.add_argument('--rect', action='store_true', help='rectangular training')
37
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
38
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
39
    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
40
    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
41
    parser.add_argument('--noplots', action='store_true', help='save no plot files')
42
    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
43
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
44
    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
45
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
46
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
47
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
48
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
49
    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
50
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
51
    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
52
    parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
53
    parser.add_argument('--name', default='exp', help='save to project/name')
54
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
55
    parser.add_argument('--quad', action='store_true', help='quad dataloader')
56
    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
57
    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
58
    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
59
    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
60
    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
61
    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
62
    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
63
64
    # Weights & Biases arguments
65
    parser.add_argument('--entity', default=None, help='W&B: Entity')
66
    parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
67
    parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
68
    parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
69
70
    # Comet Arguments
71
    parser.add_argument('--comet_optimizer_config', type=str, help='Comet: Path to a Comet Optimizer Config File.')
72
    parser.add_argument('--comet_optimizer_id', type=str, help='Comet: ID of the Comet Optimizer sweep.')
73
    parser.add_argument('--comet_optimizer_objective', type=str, help="Comet: Set to 'minimize' or 'maximize'.")
74
    parser.add_argument('--comet_optimizer_metric', type=str, help='Comet: Metric to Optimize.')
75
    parser.add_argument('--comet_optimizer_workers',
76
                        type=int,
77
                        default=1,
78
                        help='Comet: Number of Parallel Workers to use with the Comet Optimizer.')
79
80
    return parser.parse_known_args()[0] if known else parser.parse_args()
81
82
83
def run(parameters, opt):
84
    hyp_dict = {k: v for k, v in parameters.items() if k not in ['epochs', 'batch_size']}
85
86
    opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
87
    opt.batch_size = parameters.get('batch_size')
88
    opt.epochs = parameters.get('epochs')
89
90
    device = select_device(opt.device, batch_size=opt.batch_size)
91
    train(hyp_dict, opt, device, callbacks=Callbacks())
92
93
94
if __name__ == '__main__':
95
    opt = get_args(known=True)
96
97
    opt.weights = str(opt.weights)
98
    opt.cfg = str(opt.cfg)
99
    opt.data = str(opt.data)
100
    opt.project = str(opt.project)
101
102
    optimizer_id = os.getenv('COMET_OPTIMIZER_ID')
103
    if optimizer_id is None:
104
        with open(opt.comet_optimizer_config) as f:
105
            optimizer_config = json.load(f)
106
        optimizer = comet_ml.Optimizer(optimizer_config)
107
    else:
108
        optimizer = comet_ml.Optimizer(optimizer_id)
109
110
    opt.comet_optimizer_id = optimizer.id
111
    status = optimizer.status()
112
113
    opt.comet_optimizer_objective = status['spec']['objective']
114
    opt.comet_optimizer_metric = status['spec']['metric']
115
116
    logger.info('COMET INFO: Starting Hyperparameter Sweep')
117
    for parameter in optimizer.get_parameters():
118
        run(parameter['parameters'], opt)