|
a |
|
b/utils/loggers/comet/hpo.py |
|
|
1 |
import argparse |
|
|
2 |
import json |
|
|
3 |
import logging |
|
|
4 |
import os |
|
|
5 |
import sys |
|
|
6 |
from pathlib import Path |
|
|
7 |
|
|
|
8 |
import comet_ml |
|
|
9 |
|
|
|
10 |
logger = logging.getLogger(__name__) |
|
|
11 |
|
|
|
12 |
FILE = Path(__file__).resolve() |
|
|
13 |
ROOT = FILE.parents[3] # YOLOv5 root directory |
|
|
14 |
if str(ROOT) not in sys.path: |
|
|
15 |
sys.path.append(str(ROOT)) # add ROOT to PATH |
|
|
16 |
|
|
|
17 |
from train import train |
|
|
18 |
from utils.callbacks import Callbacks |
|
|
19 |
from utils.general import increment_path |
|
|
20 |
from utils.torch_utils import select_device |
|
|
21 |
|
|
|
22 |
# Project Configuration |
|
|
23 |
config = comet_ml.config.get_config() |
|
|
24 |
COMET_PROJECT_NAME = config.get_string(os.getenv('COMET_PROJECT_NAME'), 'comet.project_name', default='yolov5') |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
def get_args(known=False): |
|
|
28 |
parser = argparse.ArgumentParser() |
|
|
29 |
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path') |
|
|
30 |
parser.add_argument('--cfg', type=str, default='', help='model.yaml path') |
|
|
31 |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') |
|
|
32 |
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') |
|
|
33 |
parser.add_argument('--epochs', type=int, default=300, help='total training epochs') |
|
|
34 |
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') |
|
|
35 |
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') |
|
|
36 |
parser.add_argument('--rect', action='store_true', help='rectangular training') |
|
|
37 |
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') |
|
|
38 |
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') |
|
|
39 |
parser.add_argument('--noval', action='store_true', help='only validate final epoch') |
|
|
40 |
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') |
|
|
41 |
parser.add_argument('--noplots', action='store_true', help='save no plot files') |
|
|
42 |
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') |
|
|
43 |
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') |
|
|
44 |
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') |
|
|
45 |
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') |
|
|
46 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
47 |
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') |
|
|
48 |
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') |
|
|
49 |
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') |
|
|
50 |
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') |
|
|
51 |
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') |
|
|
52 |
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') |
|
|
53 |
parser.add_argument('--name', default='exp', help='save to project/name') |
|
|
54 |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
|
55 |
parser.add_argument('--quad', action='store_true', help='quad dataloader') |
|
|
56 |
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') |
|
|
57 |
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') |
|
|
58 |
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') |
|
|
59 |
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') |
|
|
60 |
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') |
|
|
61 |
parser.add_argument('--seed', type=int, default=0, help='Global training seed') |
|
|
62 |
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') |
|
|
63 |
|
|
|
64 |
# Weights & Biases arguments |
|
|
65 |
parser.add_argument('--entity', default=None, help='W&B: Entity') |
|
|
66 |
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option') |
|
|
67 |
parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval') |
|
|
68 |
parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use') |
|
|
69 |
|
|
|
70 |
# Comet Arguments |
|
|
71 |
parser.add_argument('--comet_optimizer_config', type=str, help='Comet: Path to a Comet Optimizer Config File.') |
|
|
72 |
parser.add_argument('--comet_optimizer_id', type=str, help='Comet: ID of the Comet Optimizer sweep.') |
|
|
73 |
parser.add_argument('--comet_optimizer_objective', type=str, help="Comet: Set to 'minimize' or 'maximize'.") |
|
|
74 |
parser.add_argument('--comet_optimizer_metric', type=str, help='Comet: Metric to Optimize.') |
|
|
75 |
parser.add_argument('--comet_optimizer_workers', |
|
|
76 |
type=int, |
|
|
77 |
default=1, |
|
|
78 |
help='Comet: Number of Parallel Workers to use with the Comet Optimizer.') |
|
|
79 |
|
|
|
80 |
return parser.parse_known_args()[0] if known else parser.parse_args() |
|
|
81 |
|
|
|
82 |
|
|
|
83 |
def run(parameters, opt): |
|
|
84 |
hyp_dict = {k: v for k, v in parameters.items() if k not in ['epochs', 'batch_size']} |
|
|
85 |
|
|
|
86 |
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) |
|
|
87 |
opt.batch_size = parameters.get('batch_size') |
|
|
88 |
opt.epochs = parameters.get('epochs') |
|
|
89 |
|
|
|
90 |
device = select_device(opt.device, batch_size=opt.batch_size) |
|
|
91 |
train(hyp_dict, opt, device, callbacks=Callbacks()) |
|
|
92 |
|
|
|
93 |
|
|
|
94 |
if __name__ == '__main__': |
|
|
95 |
opt = get_args(known=True) |
|
|
96 |
|
|
|
97 |
opt.weights = str(opt.weights) |
|
|
98 |
opt.cfg = str(opt.cfg) |
|
|
99 |
opt.data = str(opt.data) |
|
|
100 |
opt.project = str(opt.project) |
|
|
101 |
|
|
|
102 |
optimizer_id = os.getenv('COMET_OPTIMIZER_ID') |
|
|
103 |
if optimizer_id is None: |
|
|
104 |
with open(opt.comet_optimizer_config) as f: |
|
|
105 |
optimizer_config = json.load(f) |
|
|
106 |
optimizer = comet_ml.Optimizer(optimizer_config) |
|
|
107 |
else: |
|
|
108 |
optimizer = comet_ml.Optimizer(optimizer_id) |
|
|
109 |
|
|
|
110 |
opt.comet_optimizer_id = optimizer.id |
|
|
111 |
status = optimizer.status() |
|
|
112 |
|
|
|
113 |
opt.comet_optimizer_objective = status['spec']['objective'] |
|
|
114 |
opt.comet_optimizer_metric = status['spec']['metric'] |
|
|
115 |
|
|
|
116 |
logger.info('COMET INFO: Starting Hyperparameter Sweep') |
|
|
117 |
for parameter in optimizer.get_parameters(): |
|
|
118 |
run(parameter['parameters'], opt) |