|
a |
|
b/utils/general.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
General utils |
|
|
4 |
""" |
|
|
5 |
|
|
|
6 |
import contextlib |
|
|
7 |
import glob |
|
|
8 |
import inspect |
|
|
9 |
import logging |
|
|
10 |
import logging.config |
|
|
11 |
import math |
|
|
12 |
import os |
|
|
13 |
import platform |
|
|
14 |
import random |
|
|
15 |
import re |
|
|
16 |
import signal |
|
|
17 |
import subprocess |
|
|
18 |
import sys |
|
|
19 |
import time |
|
|
20 |
import urllib |
|
|
21 |
from copy import deepcopy |
|
|
22 |
from datetime import datetime |
|
|
23 |
from itertools import repeat |
|
|
24 |
from multiprocessing.pool import ThreadPool |
|
|
25 |
from pathlib import Path |
|
|
26 |
from subprocess import check_output |
|
|
27 |
from tarfile import is_tarfile |
|
|
28 |
from typing import Optional |
|
|
29 |
from zipfile import ZipFile, is_zipfile |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
import cv2 |
|
|
33 |
import numpy as np |
|
|
34 |
import pandas as pd |
|
|
35 |
import pkg_resources as pkg |
|
|
36 |
import torch |
|
|
37 |
import torchvision |
|
|
38 |
import yaml |
|
|
39 |
import torch.nn as nn |
|
|
40 |
from torchvision.ops import roi_align |
|
|
41 |
|
|
|
42 |
# Import 'ultralytics' package or install if if missing |
|
|
43 |
try: |
|
|
44 |
import ultralytics |
|
|
45 |
|
|
|
46 |
assert hasattr(ultralytics, '__version__') # verify package is not directory |
|
|
47 |
except (ImportError, AssertionError): |
|
|
48 |
os.system('pip install -U ultralytics') |
|
|
49 |
import ultralytics |
|
|
50 |
|
|
|
51 |
from ultralytics.utils.checks import check_requirements |
|
|
52 |
|
|
|
53 |
from utils import TryExcept, emojis |
|
|
54 |
from utils.downloads import curl_download, gsutil_getsize |
|
|
55 |
from utils.metrics import box_iou, fitness |
|
|
56 |
|
|
|
57 |
FILE = Path(__file__).resolve() |
|
|
58 |
ROOT = FILE.parents[1] # YOLOv5 root directory |
|
|
59 |
RANK = int(os.getenv('RANK', -1)) |
|
|
60 |
|
|
|
61 |
# Settings |
|
|
62 |
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads |
|
|
63 |
DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets')) # global datasets directory |
|
|
64 |
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode |
|
|
65 |
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode |
|
|
66 |
TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format |
|
|
67 |
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf |
|
|
68 |
|
|
|
69 |
torch.set_printoptions(linewidth=320, precision=5, profile='long') |
|
|
70 |
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 |
|
|
71 |
pd.options.display.max_columns = 10 |
|
|
72 |
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) |
|
|
73 |
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads |
|
|
74 |
os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS) # OpenMP (PyTorch and SciPy) |
|
|
75 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # suppress verbose TF compiler warnings in Colab |
|
|
76 |
|
|
|
77 |
|
|
|
78 |
def is_ascii(s=''): |
|
|
79 |
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7) |
|
|
80 |
s = str(s) # convert list, tuple, None, etc. to str |
|
|
81 |
return len(s.encode().decode('ascii', 'ignore')) == len(s) |
|
|
82 |
|
|
|
83 |
|
|
|
84 |
def is_chinese(s='人工智能'): |
|
|
85 |
# Is string composed of any Chinese characters? |
|
|
86 |
return bool(re.search('[\u4e00-\u9fff]', str(s))) |
|
|
87 |
|
|
|
88 |
|
|
|
89 |
def is_colab(): |
|
|
90 |
# Is environment a Google Colab instance? |
|
|
91 |
return 'google.colab' in sys.modules |
|
|
92 |
|
|
|
93 |
|
|
|
94 |
def is_jupyter(): |
|
|
95 |
""" |
|
|
96 |
Check if the current script is running inside a Jupyter Notebook. |
|
|
97 |
Verified on Colab, Jupyterlab, Kaggle, Paperspace. |
|
|
98 |
|
|
|
99 |
Returns: |
|
|
100 |
bool: True if running inside a Jupyter Notebook, False otherwise. |
|
|
101 |
""" |
|
|
102 |
with contextlib.suppress(Exception): |
|
|
103 |
from IPython import get_ipython |
|
|
104 |
return get_ipython() is not None |
|
|
105 |
return False |
|
|
106 |
|
|
|
107 |
|
|
|
108 |
def is_kaggle(): |
|
|
109 |
# Is environment a Kaggle Notebook? |
|
|
110 |
return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' |
|
|
111 |
|
|
|
112 |
|
|
|
113 |
def is_docker() -> bool: |
|
|
114 |
"""Check if the process runs inside a docker container.""" |
|
|
115 |
if Path('/.dockerenv').exists(): |
|
|
116 |
return True |
|
|
117 |
try: # check if docker is in control groups |
|
|
118 |
with open('/proc/self/cgroup') as file: |
|
|
119 |
return any('docker' in line for line in file) |
|
|
120 |
except OSError: |
|
|
121 |
return False |
|
|
122 |
|
|
|
123 |
|
|
|
124 |
def is_writeable(dir, test=False): |
|
|
125 |
# Return True if directory has write permissions, test opening a file with write permissions if test=True |
|
|
126 |
if not test: |
|
|
127 |
return os.access(dir, os.W_OK) # possible issues on Windows |
|
|
128 |
file = Path(dir) / 'tmp.txt' |
|
|
129 |
try: |
|
|
130 |
with open(file, 'w'): # open file with write permissions |
|
|
131 |
pass |
|
|
132 |
file.unlink() # remove file |
|
|
133 |
return True |
|
|
134 |
except OSError: |
|
|
135 |
return False |
|
|
136 |
|
|
|
137 |
|
|
|
138 |
LOGGING_NAME = 'yolov5' |
|
|
139 |
|
|
|
140 |
|
|
|
141 |
def set_logging(name=LOGGING_NAME, verbose=True): |
|
|
142 |
# sets up logging for the given name |
|
|
143 |
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings |
|
|
144 |
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR |
|
|
145 |
logging.config.dictConfig({ |
|
|
146 |
'version': 1, |
|
|
147 |
'disable_existing_loggers': False, |
|
|
148 |
'formatters': { |
|
|
149 |
name: { |
|
|
150 |
'format': '%(message)s'}}, |
|
|
151 |
'handlers': { |
|
|
152 |
name: { |
|
|
153 |
'class': 'logging.StreamHandler', |
|
|
154 |
'formatter': name, |
|
|
155 |
'level': level, }}, |
|
|
156 |
'loggers': { |
|
|
157 |
name: { |
|
|
158 |
'level': level, |
|
|
159 |
'handlers': [name], |
|
|
160 |
'propagate': False, }}}) |
|
|
161 |
|
|
|
162 |
|
|
|
163 |
set_logging(LOGGING_NAME) # run before defining LOGGER |
|
|
164 |
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.) |
|
|
165 |
if platform.system() == 'Windows': |
|
|
166 |
for fn in LOGGER.info, LOGGER.warning: |
|
|
167 |
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging |
|
|
168 |
|
|
|
169 |
|
|
|
170 |
def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'): |
|
|
171 |
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required. |
|
|
172 |
env = os.getenv(env_var) |
|
|
173 |
if env: |
|
|
174 |
path = Path(env) # use environment variable |
|
|
175 |
else: |
|
|
176 |
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs |
|
|
177 |
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir |
|
|
178 |
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable |
|
|
179 |
path.mkdir(exist_ok=True) # make if required |
|
|
180 |
return path |
|
|
181 |
|
|
|
182 |
|
|
|
183 |
CONFIG_DIR = user_config_dir() # Ultralytics settings dir |
|
|
184 |
|
|
|
185 |
|
|
|
186 |
class Profile(contextlib.ContextDecorator): |
|
|
187 |
# YOLOv5 Profile class. Usage: @Profile() decorator or 'with Profile():' context manager |
|
|
188 |
def __init__(self, t=0.0, device: torch.device = None): |
|
|
189 |
self.t = t |
|
|
190 |
self.device = device |
|
|
191 |
self.cuda = True if (device and str(device)[:4] == 'cuda') else False |
|
|
192 |
|
|
|
193 |
def __enter__(self): |
|
|
194 |
self.start = self.time() |
|
|
195 |
return self |
|
|
196 |
|
|
|
197 |
def __exit__(self, type, value, traceback): |
|
|
198 |
self.dt = self.time() - self.start # delta-time |
|
|
199 |
self.t += self.dt # accumulate dt |
|
|
200 |
|
|
|
201 |
def time(self): |
|
|
202 |
if self.cuda: |
|
|
203 |
torch.cuda.synchronize(self.device) |
|
|
204 |
return time.time() |
|
|
205 |
|
|
|
206 |
|
|
|
207 |
class Timeout(contextlib.ContextDecorator): |
|
|
208 |
# YOLOv5 Timeout class. Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager |
|
|
209 |
def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True): |
|
|
210 |
self.seconds = int(seconds) |
|
|
211 |
self.timeout_message = timeout_msg |
|
|
212 |
self.suppress = bool(suppress_timeout_errors) |
|
|
213 |
|
|
|
214 |
def _timeout_handler(self, signum, frame): |
|
|
215 |
raise TimeoutError(self.timeout_message) |
|
|
216 |
|
|
|
217 |
def __enter__(self): |
|
|
218 |
if platform.system() != 'Windows': # not supported on Windows |
|
|
219 |
signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM |
|
|
220 |
signal.alarm(self.seconds) # start countdown for SIGALRM to be raised |
|
|
221 |
|
|
|
222 |
def __exit__(self, exc_type, exc_val, exc_tb): |
|
|
223 |
if platform.system() != 'Windows': |
|
|
224 |
signal.alarm(0) # Cancel SIGALRM if it's scheduled |
|
|
225 |
if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError |
|
|
226 |
return True |
|
|
227 |
|
|
|
228 |
|
|
|
229 |
class WorkingDirectory(contextlib.ContextDecorator): |
|
|
230 |
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager |
|
|
231 |
def __init__(self, new_dir): |
|
|
232 |
self.dir = new_dir # new dir |
|
|
233 |
self.cwd = Path.cwd().resolve() # current dir |
|
|
234 |
|
|
|
235 |
def __enter__(self): |
|
|
236 |
os.chdir(self.dir) |
|
|
237 |
|
|
|
238 |
def __exit__(self, exc_type, exc_val, exc_tb): |
|
|
239 |
os.chdir(self.cwd) |
|
|
240 |
|
|
|
241 |
|
|
|
242 |
def methods(instance): |
|
|
243 |
# Get class/instance methods |
|
|
244 |
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith('__')] |
|
|
245 |
|
|
|
246 |
|
|
|
247 |
def print_args(args: Optional[dict] = None, show_file=True, show_func=False): |
|
|
248 |
# Print function arguments (optional args dict) |
|
|
249 |
x = inspect.currentframe().f_back # previous frame |
|
|
250 |
file, _, func, _, _ = inspect.getframeinfo(x) |
|
|
251 |
if args is None: # get args automatically |
|
|
252 |
args, _, _, frm = inspect.getargvalues(x) |
|
|
253 |
args = {k: v for k, v in frm.items() if k in args} |
|
|
254 |
try: |
|
|
255 |
file = Path(file).resolve().relative_to(ROOT).with_suffix('') |
|
|
256 |
except ValueError: |
|
|
257 |
file = Path(file).stem |
|
|
258 |
s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '') |
|
|
259 |
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items())) |
|
|
260 |
|
|
|
261 |
|
|
|
262 |
def init_seeds(seed=0, deterministic=False): |
|
|
263 |
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html |
|
|
264 |
random.seed(seed) |
|
|
265 |
np.random.seed(seed) |
|
|
266 |
torch.manual_seed(seed) |
|
|
267 |
torch.cuda.manual_seed(seed) |
|
|
268 |
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe |
|
|
269 |
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287 |
|
|
270 |
if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213 |
|
|
271 |
torch.use_deterministic_algorithms(True) |
|
|
272 |
torch.backends.cudnn.deterministic = True |
|
|
273 |
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' |
|
|
274 |
os.environ['PYTHONHASHSEED'] = str(seed) |
|
|
275 |
|
|
|
276 |
|
|
|
277 |
def intersect_dicts(da, db, exclude=()): |
|
|
278 |
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values |
|
|
279 |
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape} |
|
|
280 |
|
|
|
281 |
|
|
|
282 |
def get_default_args(func): |
|
|
283 |
# Get func() default arguments |
|
|
284 |
signature = inspect.signature(func) |
|
|
285 |
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} |
|
|
286 |
|
|
|
287 |
|
|
|
288 |
def get_latest_run(search_dir='.'): |
|
|
289 |
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from) |
|
|
290 |
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) |
|
|
291 |
return max(last_list, key=os.path.getctime) if last_list else '' |
|
|
292 |
|
|
|
293 |
|
|
|
294 |
def file_age(path=__file__): |
|
|
295 |
# Return days since last file update |
|
|
296 |
dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta |
|
|
297 |
return dt.days # + dt.seconds / 86400 # fractional days |
|
|
298 |
|
|
|
299 |
|
|
|
300 |
def file_date(path=__file__): |
|
|
301 |
# Return human-readable file modification date, i.e. '2021-3-26' |
|
|
302 |
t = datetime.fromtimestamp(Path(path).stat().st_mtime) |
|
|
303 |
return f'{t.year}-{t.month}-{t.day}' |
|
|
304 |
|
|
|
305 |
|
|
|
306 |
def file_size(path): |
|
|
307 |
# Return file/dir size (MB) |
|
|
308 |
mb = 1 << 20 # bytes to MiB (1024 ** 2) |
|
|
309 |
path = Path(path) |
|
|
310 |
if path.is_file(): |
|
|
311 |
return path.stat().st_size / mb |
|
|
312 |
elif path.is_dir(): |
|
|
313 |
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb |
|
|
314 |
else: |
|
|
315 |
return 0.0 |
|
|
316 |
|
|
|
317 |
|
|
|
318 |
def check_online(): |
|
|
319 |
# Check internet connectivity |
|
|
320 |
import socket |
|
|
321 |
|
|
|
322 |
def run_once(): |
|
|
323 |
# Check once |
|
|
324 |
try: |
|
|
325 |
socket.create_connection(('1.1.1.1', 443), 5) # check host accessibility |
|
|
326 |
return True |
|
|
327 |
except OSError: |
|
|
328 |
return False |
|
|
329 |
|
|
|
330 |
return run_once() or run_once() # check twice to increase robustness to intermittent connectivity issues |
|
|
331 |
|
|
|
332 |
|
|
|
333 |
def git_describe(path=ROOT): # path must be a directory |
|
|
334 |
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe |
|
|
335 |
try: |
|
|
336 |
assert (Path(path) / '.git').is_dir() |
|
|
337 |
return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1] |
|
|
338 |
except Exception: |
|
|
339 |
return '' |
|
|
340 |
|
|
|
341 |
|
|
|
342 |
@TryExcept() |
|
|
343 |
@WorkingDirectory(ROOT) |
|
|
344 |
def check_git_status(repo='ultralytics/yolov5', branch='master'): |
|
|
345 |
# YOLOv5 status check, recommend 'git pull' if code is out of date |
|
|
346 |
url = f'https://github.com/{repo}' |
|
|
347 |
msg = f', for updates see {url}' |
|
|
348 |
s = colorstr('github: ') # string |
|
|
349 |
assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg |
|
|
350 |
assert check_online(), s + 'skipping check (offline)' + msg |
|
|
351 |
|
|
|
352 |
splits = re.split(pattern=r'\s', string=check_output('git remote -v', shell=True).decode()) |
|
|
353 |
matches = [repo in s for s in splits] |
|
|
354 |
if any(matches): |
|
|
355 |
remote = splits[matches.index(True) - 1] |
|
|
356 |
else: |
|
|
357 |
remote = 'ultralytics' |
|
|
358 |
check_output(f'git remote add {remote} {url}', shell=True) |
|
|
359 |
check_output(f'git fetch {remote}', shell=True, timeout=5) # git fetch |
|
|
360 |
local_branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out |
|
|
361 |
n = int(check_output(f'git rev-list {local_branch}..{remote}/{branch} --count', shell=True)) # commits behind |
|
|
362 |
if n > 0: |
|
|
363 |
pull = 'git pull' if remote == 'origin' else f'git pull {remote} {branch}' |
|
|
364 |
s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use '{pull}' or 'git clone {url}' to update." |
|
|
365 |
else: |
|
|
366 |
s += f'up to date with {url} ✅' |
|
|
367 |
LOGGER.info(s) |
|
|
368 |
|
|
|
369 |
|
|
|
370 |
@WorkingDirectory(ROOT) |
|
|
371 |
def check_git_info(path='.'): |
|
|
372 |
# YOLOv5 git info check, return {remote, branch, commit} |
|
|
373 |
check_requirements('gitpython') |
|
|
374 |
import git |
|
|
375 |
try: |
|
|
376 |
repo = git.Repo(path) |
|
|
377 |
remote = repo.remotes.origin.url.replace('.git', '') # i.e. 'https://github.com/ultralytics/yolov5' |
|
|
378 |
commit = repo.head.commit.hexsha # i.e. '3134699c73af83aac2a481435550b968d5792c0d' |
|
|
379 |
try: |
|
|
380 |
branch = repo.active_branch.name # i.e. 'main' |
|
|
381 |
except TypeError: # not on any branch |
|
|
382 |
branch = None # i.e. 'detached HEAD' state |
|
|
383 |
return {'remote': remote, 'branch': branch, 'commit': commit} |
|
|
384 |
except git.exc.InvalidGitRepositoryError: # path is not a git dir |
|
|
385 |
return {'remote': None, 'branch': None, 'commit': None} |
|
|
386 |
|
|
|
387 |
|
|
|
388 |
def check_python(minimum='3.8.0'): |
|
|
389 |
# Check current python version vs. required python version |
|
|
390 |
check_version(platform.python_version(), minimum, name='Python ', hard=True) |
|
|
391 |
|
|
|
392 |
|
|
|
393 |
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False): |
|
|
394 |
# Check version vs. required version |
|
|
395 |
current, minimum = (pkg.parse_version(x) for x in (current, minimum)) |
|
|
396 |
result = (current == minimum) if pinned else (current >= minimum) # bool |
|
|
397 |
s = f'WARNING ⚠️ {name}{minimum} is required by YOLOv5, but {name}{current} is currently installed' # string |
|
|
398 |
if hard: |
|
|
399 |
assert result, emojis(s) # assert min requirements met |
|
|
400 |
if verbose and not result: |
|
|
401 |
LOGGER.warning(s) |
|
|
402 |
return result |
|
|
403 |
|
|
|
404 |
|
|
|
405 |
def check_img_size(imgsz, s=32, floor=0): |
|
|
406 |
# Verify image size is a multiple of stride s in each dimension |
|
|
407 |
if isinstance(imgsz, int): # integer i.e. img_size=640 |
|
|
408 |
new_size = max(make_divisible(imgsz, int(s)), floor) |
|
|
409 |
else: # list i.e. img_size=[640, 480] |
|
|
410 |
imgsz = list(imgsz) # convert to list if tuple |
|
|
411 |
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz] |
|
|
412 |
if new_size != imgsz: |
|
|
413 |
LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}') |
|
|
414 |
return new_size |
|
|
415 |
|
|
|
416 |
|
|
|
417 |
def check_imshow(warn=False): |
|
|
418 |
# Check if environment supports image displays |
|
|
419 |
try: |
|
|
420 |
assert not is_jupyter() |
|
|
421 |
assert not is_docker() |
|
|
422 |
cv2.imshow('test', np.zeros((1, 1, 3))) |
|
|
423 |
cv2.waitKey(1) |
|
|
424 |
cv2.destroyAllWindows() |
|
|
425 |
cv2.waitKey(1) |
|
|
426 |
return True |
|
|
427 |
except Exception as e: |
|
|
428 |
if warn: |
|
|
429 |
LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}') |
|
|
430 |
return False |
|
|
431 |
|
|
|
432 |
|
|
|
433 |
def check_suffix(file='yolov5s.pt', suffix=('.pt', ), msg=''): |
|
|
434 |
# Check file(s) for acceptable suffix |
|
|
435 |
if file and suffix: |
|
|
436 |
if isinstance(suffix, str): |
|
|
437 |
suffix = [suffix] |
|
|
438 |
for f in file if isinstance(file, (list, tuple)) else [file]: |
|
|
439 |
s = Path(f).suffix.lower() # file suffix |
|
|
440 |
if len(s): |
|
|
441 |
assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}' |
|
|
442 |
|
|
|
443 |
|
|
|
444 |
def check_yaml(file, suffix=('.yaml', '.yml')): |
|
|
445 |
# Search/download YAML file (if necessary) and return path, checking suffix |
|
|
446 |
return check_file(file, suffix) |
|
|
447 |
|
|
|
448 |
|
|
|
449 |
def check_file(file, suffix=''): |
|
|
450 |
# Search/download file (if necessary) and return path |
|
|
451 |
check_suffix(file, suffix) # optional |
|
|
452 |
file = str(file) # convert to str() |
|
|
453 |
if os.path.isfile(file) or not file: # exists |
|
|
454 |
return file |
|
|
455 |
elif file.startswith(('http:/', 'https:/')): # download |
|
|
456 |
url = file # warning: Pathlib turns :// -> :/ |
|
|
457 |
file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth |
|
|
458 |
if os.path.isfile(file): |
|
|
459 |
LOGGER.info(f'Found {url} locally at {file}') # file already exists |
|
|
460 |
else: |
|
|
461 |
LOGGER.info(f'Downloading {url} to {file}...') |
|
|
462 |
torch.hub.download_url_to_file(url, file) |
|
|
463 |
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check |
|
|
464 |
return file |
|
|
465 |
elif file.startswith('clearml://'): # ClearML Dataset ID |
|
|
466 |
assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'." |
|
|
467 |
return file |
|
|
468 |
else: # search |
|
|
469 |
files = [] |
|
|
470 |
for d in 'data', 'models', 'utils': # search directories |
|
|
471 |
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file |
|
|
472 |
assert len(files), f'File not found: {file}' # assert file was found |
|
|
473 |
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique |
|
|
474 |
return files[0] # return file |
|
|
475 |
|
|
|
476 |
|
|
|
477 |
def check_font(font=FONT, progress=False): |
|
|
478 |
# Download font to CONFIG_DIR if necessary |
|
|
479 |
font = Path(font) |
|
|
480 |
file = CONFIG_DIR / font.name |
|
|
481 |
if not font.exists() and not file.exists(): |
|
|
482 |
url = f'https://ultralytics.com/assets/{font.name}' |
|
|
483 |
LOGGER.info(f'Downloading {url} to {file}...') |
|
|
484 |
torch.hub.download_url_to_file(url, str(file), progress=progress) |
|
|
485 |
|
|
|
486 |
|
|
|
487 |
def check_dataset(data, autodownload=True): |
|
|
488 |
# Download, check and/or unzip dataset if not found locally |
|
|
489 |
|
|
|
490 |
# Download (optional) |
|
|
491 |
extract_dir = '' |
|
|
492 |
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)): |
|
|
493 |
download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1) |
|
|
494 |
data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml')) |
|
|
495 |
extract_dir, autodownload = data.parent, False |
|
|
496 |
|
|
|
497 |
# Read yaml (optional) |
|
|
498 |
if isinstance(data, (str, Path)): |
|
|
499 |
data = yaml_load(data) # dictionary |
|
|
500 |
|
|
|
501 |
# Checks |
|
|
502 |
for k in 'train', 'val', 'names': |
|
|
503 |
assert k in data, emojis(f"data.yaml '{k}:' field missing ❌") |
|
|
504 |
if isinstance(data['names'], (list, tuple)): # old array format |
|
|
505 |
data['names'] = dict(enumerate(data['names'])) # convert to dict |
|
|
506 |
assert all(isinstance(k, int) for k in data['names'].keys()), 'data.yaml names keys must be integers, i.e. 2: car' |
|
|
507 |
data['nc'] = len(data['names']) |
|
|
508 |
|
|
|
509 |
# Resolve paths |
|
|
510 |
path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.' |
|
|
511 |
if not path.is_absolute(): |
|
|
512 |
path = (ROOT / path).resolve() |
|
|
513 |
data['path'] = path # download scripts |
|
|
514 |
for k in 'train', 'val', 'test': |
|
|
515 |
if data.get(k): # prepend path |
|
|
516 |
if isinstance(data[k], str): |
|
|
517 |
x = (path / data[k]).resolve() |
|
|
518 |
if not x.exists() and data[k].startswith('../'): |
|
|
519 |
x = (path / data[k][3:]).resolve() |
|
|
520 |
data[k] = str(x) |
|
|
521 |
else: |
|
|
522 |
data[k] = [str((path / x).resolve()) for x in data[k]] |
|
|
523 |
|
|
|
524 |
# Parse yaml |
|
|
525 |
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) |
|
|
526 |
if val: |
|
|
527 |
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path |
|
|
528 |
if not all(x.exists() for x in val): |
|
|
529 |
LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()]) |
|
|
530 |
if not s or not autodownload: |
|
|
531 |
raise Exception('Dataset not found ❌') |
|
|
532 |
t = time.time() |
|
|
533 |
if s.startswith('http') and s.endswith('.zip'): # URL |
|
|
534 |
f = Path(s).name # filename |
|
|
535 |
LOGGER.info(f'Downloading {s} to {f}...') |
|
|
536 |
torch.hub.download_url_to_file(s, f) |
|
|
537 |
Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True) # create root |
|
|
538 |
unzip_file(f, path=DATASETS_DIR) # unzip |
|
|
539 |
Path(f).unlink() # remove zip |
|
|
540 |
r = None # success |
|
|
541 |
elif s.startswith('bash '): # bash script |
|
|
542 |
LOGGER.info(f'Running {s} ...') |
|
|
543 |
r = subprocess.run(s, shell=True) |
|
|
544 |
else: # python script |
|
|
545 |
r = exec(s, {'yaml': data}) # return None |
|
|
546 |
dt = f'({round(time.time() - t, 1)}s)' |
|
|
547 |
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f'failure {dt} ❌' |
|
|
548 |
LOGGER.info(f'Dataset download {s}') |
|
|
549 |
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts |
|
|
550 |
return data # dictionary |
|
|
551 |
|
|
|
552 |
|
|
|
553 |
def check_amp(model): |
|
|
554 |
# Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation |
|
|
555 |
from models.common import AutoShape, DetectMultiBackend |
|
|
556 |
|
|
|
557 |
def amp_allclose(model, im): |
|
|
558 |
# All close FP32 vs AMP results |
|
|
559 |
m = AutoShape(model, verbose=False) # model |
|
|
560 |
a = m(im).xywhn[0] # FP32 inference |
|
|
561 |
m.amp = True |
|
|
562 |
b = m(im).xywhn[0] # AMP inference |
|
|
563 |
return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance |
|
|
564 |
|
|
|
565 |
prefix = colorstr('AMP: ') |
|
|
566 |
device = next(model.parameters()).device # get model device |
|
|
567 |
if device.type in ('cpu', 'mps'): |
|
|
568 |
return False # AMP only used on CUDA devices |
|
|
569 |
f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check |
|
|
570 |
im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3)) |
|
|
571 |
try: |
|
|
572 |
assert amp_allclose(deepcopy(model), im) or amp_allclose(DetectMultiBackend('yolov5n.pt', device), im) |
|
|
573 |
LOGGER.info(f'{prefix}checks passed ✅') |
|
|
574 |
return True |
|
|
575 |
except Exception: |
|
|
576 |
help_url = 'https://github.com/ultralytics/yolov5/issues/7908' |
|
|
577 |
LOGGER.warning(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}') |
|
|
578 |
return False |
|
|
579 |
|
|
|
580 |
|
|
|
581 |
def yaml_load(file='data.yaml'): |
|
|
582 |
# Single-line safe yaml loading |
|
|
583 |
with open(file, errors='ignore') as f: |
|
|
584 |
return yaml.safe_load(f) |
|
|
585 |
|
|
|
586 |
|
|
|
587 |
def yaml_save(file='data.yaml', data={}): |
|
|
588 |
# Single-line safe yaml saving |
|
|
589 |
with open(file, 'w') as f: |
|
|
590 |
yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False) |
|
|
591 |
|
|
|
592 |
|
|
|
593 |
def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')): |
|
|
594 |
# Unzip a *.zip file to path/, excluding files containing strings in exclude list |
|
|
595 |
if path is None: |
|
|
596 |
path = Path(file).parent # default path |
|
|
597 |
with ZipFile(file) as zipObj: |
|
|
598 |
for f in zipObj.namelist(): # list all archived filenames in the zip |
|
|
599 |
if all(x not in f for x in exclude): |
|
|
600 |
zipObj.extract(f, path=path) |
|
|
601 |
|
|
|
602 |
|
|
|
603 |
def url2file(url): |
|
|
604 |
# Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt |
|
|
605 |
url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/ |
|
|
606 |
return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth |
|
|
607 |
|
|
|
608 |
|
|
|
609 |
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3): |
|
|
610 |
# Multithreaded file download and unzip function, used in data.yaml for autodownload |
|
|
611 |
def download_one(url, dir): |
|
|
612 |
# Download 1 file |
|
|
613 |
success = True |
|
|
614 |
if os.path.isfile(url): |
|
|
615 |
f = Path(url) # filename |
|
|
616 |
else: # does not exist |
|
|
617 |
f = dir / Path(url).name |
|
|
618 |
LOGGER.info(f'Downloading {url} to {f}...') |
|
|
619 |
for i in range(retry + 1): |
|
|
620 |
if curl: |
|
|
621 |
success = curl_download(url, f, silent=(threads > 1)) |
|
|
622 |
else: |
|
|
623 |
torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download |
|
|
624 |
success = f.is_file() |
|
|
625 |
if success: |
|
|
626 |
break |
|
|
627 |
elif i < retry: |
|
|
628 |
LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...') |
|
|
629 |
else: |
|
|
630 |
LOGGER.warning(f'❌ Failed to download {url}...') |
|
|
631 |
|
|
|
632 |
if unzip and success and (f.suffix == '.gz' or is_zipfile(f) or is_tarfile(f)): |
|
|
633 |
LOGGER.info(f'Unzipping {f}...') |
|
|
634 |
if is_zipfile(f): |
|
|
635 |
unzip_file(f, dir) # unzip |
|
|
636 |
elif is_tarfile(f): |
|
|
637 |
subprocess.run(['tar', 'xf', f, '--directory', f.parent], check=True) # unzip |
|
|
638 |
elif f.suffix == '.gz': |
|
|
639 |
subprocess.run(['tar', 'xfz', f, '--directory', f.parent], check=True) # unzip |
|
|
640 |
if delete: |
|
|
641 |
f.unlink() # remove zip |
|
|
642 |
|
|
|
643 |
dir = Path(dir) |
|
|
644 |
dir.mkdir(parents=True, exist_ok=True) # make directory |
|
|
645 |
if threads > 1: |
|
|
646 |
pool = ThreadPool(threads) |
|
|
647 |
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded |
|
|
648 |
pool.close() |
|
|
649 |
pool.join() |
|
|
650 |
else: |
|
|
651 |
for u in [url] if isinstance(url, (str, Path)) else url: |
|
|
652 |
download_one(u, dir) |
|
|
653 |
|
|
|
654 |
|
|
|
655 |
def make_divisible(x, divisor): |
|
|
656 |
# Returns nearest x divisible by divisor |
|
|
657 |
if isinstance(divisor, torch.Tensor): |
|
|
658 |
divisor = int(divisor.max()) # to int |
|
|
659 |
return math.ceil(x / divisor) * divisor |
|
|
660 |
|
|
|
661 |
|
|
|
662 |
def clean_str(s): |
|
|
663 |
# Cleans a string by replacing special characters with underscore _ |
|
|
664 |
return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s) |
|
|
665 |
|
|
|
666 |
|
|
|
667 |
def one_cycle(y1=0.0, y2=1.0, steps=100): |
|
|
668 |
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf |
|
|
669 |
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 |
|
|
670 |
|
|
|
671 |
|
|
|
672 |
def colorstr(*input): |
|
|
673 |
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') |
|
|
674 |
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string |
|
|
675 |
colors = { |
|
|
676 |
'black': '\033[30m', # basic colors |
|
|
677 |
'red': '\033[31m', |
|
|
678 |
'green': '\033[32m', |
|
|
679 |
'yellow': '\033[33m', |
|
|
680 |
'blue': '\033[34m', |
|
|
681 |
'magenta': '\033[35m', |
|
|
682 |
'cyan': '\033[36m', |
|
|
683 |
'white': '\033[37m', |
|
|
684 |
'bright_black': '\033[90m', # bright colors |
|
|
685 |
'bright_red': '\033[91m', |
|
|
686 |
'bright_green': '\033[92m', |
|
|
687 |
'bright_yellow': '\033[93m', |
|
|
688 |
'bright_blue': '\033[94m', |
|
|
689 |
'bright_magenta': '\033[95m', |
|
|
690 |
'bright_cyan': '\033[96m', |
|
|
691 |
'bright_white': '\033[97m', |
|
|
692 |
'end': '\033[0m', # misc |
|
|
693 |
'bold': '\033[1m', |
|
|
694 |
'underline': '\033[4m'} |
|
|
695 |
return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] |
|
|
696 |
|
|
|
697 |
|
|
|
698 |
def labels_to_class_weights(labels, nc=80): |
|
|
699 |
# Get class weights (inverse frequency) from training labels |
|
|
700 |
if labels[0] is None: # no labels loaded |
|
|
701 |
return torch.Tensor() |
|
|
702 |
|
|
|
703 |
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO |
|
|
704 |
classes = labels[:, 0].astype(int) # labels = [class xywh] |
|
|
705 |
weights = np.bincount(classes, minlength=nc) # occurrences per class |
|
|
706 |
|
|
|
707 |
# Prepend gridpoint count (for uCE training) |
|
|
708 |
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image |
|
|
709 |
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start |
|
|
710 |
|
|
|
711 |
weights[weights == 0] = 1 # replace empty bins with 1 |
|
|
712 |
weights = 1 / weights # number of targets per class |
|
|
713 |
weights /= weights.sum() # normalize |
|
|
714 |
return torch.from_numpy(weights).float() |
|
|
715 |
|
|
|
716 |
|
|
|
717 |
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): |
|
|
718 |
# Produces image weights based on class_weights and image contents |
|
|
719 |
# Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample |
|
|
720 |
class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels]) |
|
|
721 |
return (class_weights.reshape(1, nc) * class_counts).sum(1) |
|
|
722 |
|
|
|
723 |
|
|
|
724 |
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) |
|
|
725 |
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ |
|
|
726 |
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') |
|
|
727 |
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') |
|
|
728 |
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco |
|
|
729 |
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet |
|
|
730 |
return [ |
|
|
731 |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, |
|
|
732 |
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
|
|
733 |
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] |
|
|
734 |
|
|
|
735 |
|
|
|
736 |
def xyxy2xywh(x): |
|
|
737 |
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right |
|
|
738 |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|
|
739 |
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center |
|
|
740 |
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center |
|
|
741 |
y[..., 2] = x[..., 2] - x[..., 0] # width |
|
|
742 |
y[..., 3] = x[..., 3] - x[..., 1] # height |
|
|
743 |
return y |
|
|
744 |
|
|
|
745 |
|
|
|
746 |
def xywh2xyxy(x): |
|
|
747 |
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right |
|
|
748 |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|
|
749 |
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x |
|
|
750 |
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y |
|
|
751 |
y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x |
|
|
752 |
y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y |
|
|
753 |
return y |
|
|
754 |
|
|
|
755 |
|
|
|
756 |
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): |
|
|
757 |
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right |
|
|
758 |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|
|
759 |
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x |
|
|
760 |
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y |
|
|
761 |
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x |
|
|
762 |
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y |
|
|
763 |
return y |
|
|
764 |
|
|
|
765 |
|
|
|
766 |
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): |
|
|
767 |
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right |
|
|
768 |
if clip: |
|
|
769 |
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip |
|
|
770 |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|
|
771 |
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center |
|
|
772 |
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center |
|
|
773 |
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width |
|
|
774 |
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height |
|
|
775 |
return y |
|
|
776 |
|
|
|
777 |
|
|
|
778 |
def xyn2xy(x, w=640, h=640, padw=0, padh=0): |
|
|
779 |
# Convert normalized segments into pixel segments, shape (n,2) |
|
|
780 |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|
|
781 |
y[..., 0] = w * x[..., 0] + padw # top left x |
|
|
782 |
y[..., 1] = h * x[..., 1] + padh # top left y |
|
|
783 |
return y |
|
|
784 |
|
|
|
785 |
|
|
|
786 |
def segment2box(segment, width=640, height=640): |
|
|
787 |
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) |
|
|
788 |
x, y = segment.T # segment xy |
|
|
789 |
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) |
|
|
790 |
x, y, = x[inside], y[inside] |
|
|
791 |
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy |
|
|
792 |
|
|
|
793 |
|
|
|
794 |
def segments2boxes(segments): |
|
|
795 |
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) |
|
|
796 |
boxes = [] |
|
|
797 |
for s in segments: |
|
|
798 |
x, y = s.T # segment xy |
|
|
799 |
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy |
|
|
800 |
return xyxy2xywh(np.array(boxes)) # cls, xywh |
|
|
801 |
|
|
|
802 |
|
|
|
803 |
def resample_segments(segments, n=1000): |
|
|
804 |
# Up-sample an (n,2) segment |
|
|
805 |
for i, s in enumerate(segments): |
|
|
806 |
s = np.concatenate((s, s[0:1, :]), axis=0) |
|
|
807 |
x = np.linspace(0, len(s) - 1, n) |
|
|
808 |
xp = np.arange(len(s)) |
|
|
809 |
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy |
|
|
810 |
return segments |
|
|
811 |
|
|
|
812 |
|
|
|
813 |
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None): |
|
|
814 |
# Rescale boxes (xyxy) from img1_shape to img0_shape |
|
|
815 |
if ratio_pad is None: # calculate from img0_shape |
|
|
816 |
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new |
|
|
817 |
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding |
|
|
818 |
else: |
|
|
819 |
gain = ratio_pad[0][0] |
|
|
820 |
pad = ratio_pad[1] |
|
|
821 |
|
|
|
822 |
boxes[..., [0, 2]] -= pad[0] # x padding |
|
|
823 |
boxes[..., [1, 3]] -= pad[1] # y padding |
|
|
824 |
boxes[..., :4] /= gain |
|
|
825 |
clip_boxes(boxes, img0_shape) |
|
|
826 |
return boxes |
|
|
827 |
|
|
|
828 |
|
|
|
829 |
def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False): |
|
|
830 |
# Rescale coords (xyxy) from img1_shape to img0_shape |
|
|
831 |
if ratio_pad is None: # calculate from img0_shape |
|
|
832 |
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new |
|
|
833 |
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding |
|
|
834 |
else: |
|
|
835 |
gain = ratio_pad[0][0] |
|
|
836 |
pad = ratio_pad[1] |
|
|
837 |
|
|
|
838 |
segments[:, 0] -= pad[0] # x padding |
|
|
839 |
segments[:, 1] -= pad[1] # y padding |
|
|
840 |
segments /= gain |
|
|
841 |
clip_segments(segments, img0_shape) |
|
|
842 |
if normalize: |
|
|
843 |
segments[:, 0] /= img0_shape[1] # width |
|
|
844 |
segments[:, 1] /= img0_shape[0] # height |
|
|
845 |
return segments |
|
|
846 |
|
|
|
847 |
|
|
|
848 |
def clip_boxes(boxes, shape): |
|
|
849 |
# Clip boxes (xyxy) to image shape (height, width) |
|
|
850 |
if isinstance(boxes, torch.Tensor): # faster individually |
|
|
851 |
boxes[..., 0].clamp_(0, shape[1]) # x1 |
|
|
852 |
boxes[..., 1].clamp_(0, shape[0]) # y1 |
|
|
853 |
boxes[..., 2].clamp_(0, shape[1]) # x2 |
|
|
854 |
boxes[..., 3].clamp_(0, shape[0]) # y2 |
|
|
855 |
else: # np.array (faster grouped) |
|
|
856 |
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2 |
|
|
857 |
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2 |
|
|
858 |
|
|
|
859 |
|
|
|
860 |
def clip_segments(segments, shape): |
|
|
861 |
# Clip segments (xy1,xy2,...) to image shape (height, width) |
|
|
862 |
if isinstance(segments, torch.Tensor): # faster individually |
|
|
863 |
segments[:, 0].clamp_(0, shape[1]) # x |
|
|
864 |
segments[:, 1].clamp_(0, shape[0]) # y |
|
|
865 |
else: # np.array (faster grouped) |
|
|
866 |
segments[:, 0] = segments[:, 0].clip(0, shape[1]) # x |
|
|
867 |
segments[:, 1] = segments[:, 1].clip(0, shape[0]) # y |
|
|
868 |
|
|
|
869 |
|
|
|
870 |
def non_max_suppression( |
|
|
871 |
prediction, |
|
|
872 |
conf_thres=0.25, |
|
|
873 |
iou_thres=0.45, |
|
|
874 |
classes=None, |
|
|
875 |
agnostic=False, |
|
|
876 |
multi_label=False, |
|
|
877 |
labels=(), |
|
|
878 |
max_det=300, |
|
|
879 |
nm=0, # number of masks |
|
|
880 |
): |
|
|
881 |
"""Non-Maximum Suppression (NMS) on inference results to reject overlapping detections |
|
|
882 |
|
|
|
883 |
Returns: |
|
|
884 |
list of detections, on (n,6) tensor per image [xyxy, conf, cls] |
|
|
885 |
""" |
|
|
886 |
|
|
|
887 |
# Checks |
|
|
888 |
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' |
|
|
889 |
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' |
|
|
890 |
if isinstance(prediction, (list, tuple)): # YOLOv5 model in validation model, output = (inference_out, loss_out) |
|
|
891 |
prediction = prediction[0] # select only inference output |
|
|
892 |
|
|
|
893 |
device = prediction.device |
|
|
894 |
mps = 'mps' in device.type # Apple MPS |
|
|
895 |
if mps: # MPS not fully supported yet, convert tensors to CPU before NMS |
|
|
896 |
prediction = prediction.cpu() |
|
|
897 |
bs = prediction.shape[0] # batch size |
|
|
898 |
nc = prediction.shape[2] - nm - 5 # number of classes |
|
|
899 |
xc = prediction[..., 4] > conf_thres # candidates |
|
|
900 |
|
|
|
901 |
# Settings |
|
|
902 |
# min_wh = 2 # (pixels) minimum box width and height |
|
|
903 |
max_wh = 7680 # (pixels) maximum box width and height |
|
|
904 |
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() |
|
|
905 |
time_limit = 0.5 + 0.05 * bs # seconds to quit after |
|
|
906 |
redundant = True # require redundant detections |
|
|
907 |
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) |
|
|
908 |
merge = False # use merge-NMS |
|
|
909 |
|
|
|
910 |
t = time.time() |
|
|
911 |
mi = 5 + nc # mask start index |
|
|
912 |
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs |
|
|
913 |
for xi, x in enumerate(prediction): # image index, image inference |
|
|
914 |
# Apply constraints |
|
|
915 |
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height |
|
|
916 |
x = x[xc[xi]] # confidence |
|
|
917 |
|
|
|
918 |
# Cat apriori labels if autolabelling |
|
|
919 |
if labels and len(labels[xi]): |
|
|
920 |
lb = labels[xi] |
|
|
921 |
v = torch.zeros((len(lb), nc + nm + 5), device=x.device) |
|
|
922 |
v[:, :4] = lb[:, 1:5] # box |
|
|
923 |
v[:, 4] = 1.0 # conf |
|
|
924 |
v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls |
|
|
925 |
x = torch.cat((x, v), 0) |
|
|
926 |
|
|
|
927 |
# If none remain process next image |
|
|
928 |
if not x.shape[0]: |
|
|
929 |
continue |
|
|
930 |
|
|
|
931 |
# Compute conf |
|
|
932 |
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf |
|
|
933 |
|
|
|
934 |
# Box/Mask |
|
|
935 |
box = xywh2xyxy(x[:, :4]) # center_x, center_y, width, height) to (x1, y1, x2, y2) |
|
|
936 |
mask = x[:, mi:] # zero columns if no masks |
|
|
937 |
|
|
|
938 |
# Detections matrix nx6 (xyxy, conf, cls) |
|
|
939 |
if multi_label: |
|
|
940 |
i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T |
|
|
941 |
x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1) |
|
|
942 |
else: # best class only |
|
|
943 |
conf, j = x[:, 5:mi].max(1, keepdim=True) |
|
|
944 |
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres] |
|
|
945 |
|
|
|
946 |
# Filter by class |
|
|
947 |
if classes is not None: |
|
|
948 |
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] |
|
|
949 |
|
|
|
950 |
# Apply finite constraint |
|
|
951 |
# if not torch.isfinite(x).all(): |
|
|
952 |
# x = x[torch.isfinite(x).all(1)] |
|
|
953 |
|
|
|
954 |
# Check shape |
|
|
955 |
n = x.shape[0] # number of boxes |
|
|
956 |
if not n: # no boxes |
|
|
957 |
continue |
|
|
958 |
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes |
|
|
959 |
|
|
|
960 |
# Batched NMS |
|
|
961 |
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes |
|
|
962 |
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores |
|
|
963 |
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS |
|
|
964 |
i = i[:max_det] # limit detections |
|
|
965 |
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) |
|
|
966 |
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) |
|
|
967 |
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix |
|
|
968 |
weights = iou * scores[None] # box weights |
|
|
969 |
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes |
|
|
970 |
if redundant: |
|
|
971 |
i = i[iou.sum(1) > 1] # require redundancy |
|
|
972 |
|
|
|
973 |
output[xi] = x[i] |
|
|
974 |
if mps: |
|
|
975 |
output[xi] = output[xi].to(device) |
|
|
976 |
if (time.time() - t) > time_limit: |
|
|
977 |
LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded') |
|
|
978 |
break # time limit exceeded |
|
|
979 |
|
|
|
980 |
return output |
|
|
981 |
|
|
|
982 |
|
|
|
983 |
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer() |
|
|
984 |
# Strip optimizer from 'f' to finalize training, optionally save as 's' |
|
|
985 |
x = torch.load(f, map_location=torch.device('cpu')) |
|
|
986 |
if x.get('ema'): |
|
|
987 |
x['model'] = x['ema'] # replace model with ema |
|
|
988 |
for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys |
|
|
989 |
x[k] = None |
|
|
990 |
x['epoch'] = -1 |
|
|
991 |
x['model'].half() # to FP16 |
|
|
992 |
for p in x['model'].parameters(): |
|
|
993 |
p.requires_grad = False |
|
|
994 |
torch.save(x, s or f) |
|
|
995 |
mb = os.path.getsize(s or f) / 1E6 # filesize |
|
|
996 |
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB") |
|
|
997 |
|
|
|
998 |
|
|
|
999 |
def print_mutation(keys, results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')): |
|
|
1000 |
evolve_csv = save_dir / 'evolve.csv' |
|
|
1001 |
evolve_yaml = save_dir / 'hyp_evolve.yaml' |
|
|
1002 |
keys = tuple(keys) + tuple(hyp.keys()) # [results + hyps] |
|
|
1003 |
keys = tuple(x.strip() for x in keys) |
|
|
1004 |
vals = results + tuple(hyp.values()) |
|
|
1005 |
n = len(keys) |
|
|
1006 |
|
|
|
1007 |
# Download (optional) |
|
|
1008 |
if bucket: |
|
|
1009 |
url = f'gs://{bucket}/evolve.csv' |
|
|
1010 |
if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0): |
|
|
1011 |
subprocess.run(['gsutil', 'cp', f'{url}', f'{save_dir}']) # download evolve.csv if larger than local |
|
|
1012 |
|
|
|
1013 |
# Log to evolve.csv |
|
|
1014 |
s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header |
|
|
1015 |
with open(evolve_csv, 'a') as f: |
|
|
1016 |
f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n') |
|
|
1017 |
|
|
|
1018 |
# Save yaml |
|
|
1019 |
with open(evolve_yaml, 'w') as f: |
|
|
1020 |
data = pd.read_csv(evolve_csv, skipinitialspace=True) |
|
|
1021 |
data = data.rename(columns=lambda x: x.strip()) # strip keys |
|
|
1022 |
i = np.argmax(fitness(data.values[:, :4])) # |
|
|
1023 |
generations = len(data) |
|
|
1024 |
f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' + |
|
|
1025 |
f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + |
|
|
1026 |
'\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n') |
|
|
1027 |
yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False) |
|
|
1028 |
|
|
|
1029 |
# Print to screen |
|
|
1030 |
LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix + |
|
|
1031 |
', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}' |
|
|
1032 |
for x in vals) + '\n\n') |
|
|
1033 |
|
|
|
1034 |
if bucket: |
|
|
1035 |
subprocess.run(['gsutil', 'cp', f'{evolve_csv}', f'{evolve_yaml}', f'gs://{bucket}']) # upload |
|
|
1036 |
|
|
|
1037 |
|
|
|
1038 |
def apply_classifier(x, model, img, im0): |
|
|
1039 |
# Apply a second stage classifier to YOLO outputs |
|
|
1040 |
# Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval() |
|
|
1041 |
im0 = [im0] if isinstance(im0, np.ndarray) else im0 |
|
|
1042 |
for i, d in enumerate(x): # per image |
|
|
1043 |
if d is not None and len(d): |
|
|
1044 |
d = d.clone() |
|
|
1045 |
|
|
|
1046 |
# Reshape and pad cutouts |
|
|
1047 |
b = xyxy2xywh(d[:, :4]) # boxes |
|
|
1048 |
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square |
|
|
1049 |
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad |
|
|
1050 |
d[:, :4] = xywh2xyxy(b).long() |
|
|
1051 |
|
|
|
1052 |
# Rescale boxes from img_size to im0 size |
|
|
1053 |
scale_boxes(img.shape[2:], d[:, :4], im0[i].shape) |
|
|
1054 |
|
|
|
1055 |
# Classes |
|
|
1056 |
pred_cls1 = d[:, 5].long() |
|
|
1057 |
ims = [] |
|
|
1058 |
for a in d: |
|
|
1059 |
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] |
|
|
1060 |
im = cv2.resize(cutout, (224, 224)) # BGR |
|
|
1061 |
|
|
|
1062 |
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 |
|
|
1063 |
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 |
|
|
1064 |
im /= 255 # 0 - 255 to 0.0 - 1.0 |
|
|
1065 |
ims.append(im) |
|
|
1066 |
|
|
|
1067 |
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction |
|
|
1068 |
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections |
|
|
1069 |
|
|
|
1070 |
return x |
|
|
1071 |
|
|
|
1072 |
|
|
|
1073 |
def increment_path(path, exist_ok=False, sep='', mkdir=False): |
|
|
1074 |
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc. |
|
|
1075 |
path = Path(path) # os-agnostic |
|
|
1076 |
if path.exists() and not exist_ok: |
|
|
1077 |
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '') |
|
|
1078 |
|
|
|
1079 |
# Method 1 |
|
|
1080 |
for n in range(2, 9999): |
|
|
1081 |
p = f'{path}{sep}{n}{suffix}' # increment path |
|
|
1082 |
if not os.path.exists(p): # |
|
|
1083 |
break |
|
|
1084 |
path = Path(p) |
|
|
1085 |
|
|
|
1086 |
# Method 2 (deprecated) |
|
|
1087 |
# dirs = glob.glob(f"{path}{sep}*") # similar paths |
|
|
1088 |
# matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs] |
|
|
1089 |
# i = [int(m.groups()[0]) for m in matches if m] # indices |
|
|
1090 |
# n = max(i) + 1 if i else 2 # increment number |
|
|
1091 |
# path = Path(f"{path}{sep}{n}{suffix}") # increment path |
|
|
1092 |
|
|
|
1093 |
if mkdir: |
|
|
1094 |
path.mkdir(parents=True, exist_ok=True) # make directory |
|
|
1095 |
|
|
|
1096 |
return path |
|
|
1097 |
|
|
|
1098 |
|
|
|
1099 |
# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------------ |
|
|
1100 |
imshow_ = cv2.imshow # copy to avoid recursion errors |
|
|
1101 |
|
|
|
1102 |
|
|
|
1103 |
def imread(filename, flags=cv2.IMREAD_COLOR): |
|
|
1104 |
return cv2.imdecode(np.fromfile(filename, np.uint8), flags) |
|
|
1105 |
|
|
|
1106 |
|
|
|
1107 |
def imwrite(filename, img): |
|
|
1108 |
try: |
|
|
1109 |
cv2.imencode(Path(filename).suffix, img)[1].tofile(filename) |
|
|
1110 |
return True |
|
|
1111 |
except Exception: |
|
|
1112 |
return False |
|
|
1113 |
|
|
|
1114 |
|
|
|
1115 |
def imshow(path, im): |
|
|
1116 |
imshow_(path.encode('unicode_escape').decode(), im) |
|
|
1117 |
|
|
|
1118 |
|
|
|
1119 |
if Path(inspect.stack()[0].filename).parent.parent.as_posix() in inspect.stack()[-1].filename: |
|
|
1120 |
cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine |
|
|
1121 |
|
|
|
1122 |
|
|
|
1123 |
def get_object_level_feature_maps(feature_map, targets): |
|
|
1124 |
feature_map_shape = feature_map.shape[2:] |
|
|
1125 |
|
|
|
1126 |
# Assuming targets contain batch, class, x_center, y_center, width, height |
|
|
1127 |
x_center = targets[:, 2] * feature_map_shape[1] |
|
|
1128 |
y_center = targets[:, 3] * feature_map_shape[0] |
|
|
1129 |
width = targets[:, 4] * feature_map_shape[1] |
|
|
1130 |
height = targets[:, 5] * feature_map_shape[0] |
|
|
1131 |
|
|
|
1132 |
# Calculate pixel coordinates for the bounding boxes |
|
|
1133 |
x_min = torch.clamp((x_center - width / 2).int(), 0, feature_map_shape[1] - 1) |
|
|
1134 |
y_min = torch.clamp((y_center - height / 2).int(), 0, feature_map_shape[0] - 1) |
|
|
1135 |
x_max = torch.clamp((x_center + width / 2).int(), 0, feature_map_shape[1] - 1) |
|
|
1136 |
y_max = torch.clamp((y_center + height / 2).int(), 0, feature_map_shape[0] - 1) |
|
|
1137 |
|
|
|
1138 |
# Extract regions from the feature_map based on the bounding boxes |
|
|
1139 |
extracted_regions = [feature_map[:, :, y_min[i]:y_max[i] + 1, x_min[i]:x_max[i] + 1] for i in range(targets.shape[0])] |
|
|
1140 |
|
|
|
1141 |
return extracted_regions |
|
|
1142 |
|
|
|
1143 |
def get_object_level_feature_maps2(feature_map, targets): |
|
|
1144 |
feature_map_shape = feature_map.shape[2:] |
|
|
1145 |
|
|
|
1146 |
# Assuming targets contain batch, class, x_center, y_center, width, height |
|
|
1147 |
x_center = targets[:, 1] * feature_map_shape[1] |
|
|
1148 |
y_center = targets[:, 2] * feature_map_shape[0] |
|
|
1149 |
width = targets[:, 3] * feature_map_shape[1] |
|
|
1150 |
height = targets[:, 4] * feature_map_shape[0] |
|
|
1151 |
|
|
|
1152 |
# Calculate pixel coordinates for the bounding boxes |
|
|
1153 |
x_min = torch.clamp((x_center - width / 2).int(), 0, feature_map_shape[1] - 1) |
|
|
1154 |
y_min = torch.clamp((y_center - height / 2).int(), 0, feature_map_shape[0] - 1) |
|
|
1155 |
x_max = torch.clamp((x_center + width / 2).int(), 0, feature_map_shape[1] - 1) |
|
|
1156 |
y_max = torch.clamp((y_center + height / 2).int(), 0, feature_map_shape[0] - 1) |
|
|
1157 |
|
|
|
1158 |
# Extract regions from the feature_map based on the bounding boxes |
|
|
1159 |
extracted_regions = [feature_map[:, :, y_min[i]:y_max[i] + 1, x_min[i]:x_max[i] + 1] for i in range(targets.shape[0])] |
|
|
1160 |
|
|
|
1161 |
return extracted_regions |
|
|
1162 |
|
|
|
1163 |
def extract_roi_features(concatenated_features, resize_boxes): |
|
|
1164 |
""" |
|
|
1165 |
Extracts regions of interest (ROIs) from the concatenated_features based on resize_boxes. |
|
|
1166 |
|
|
|
1167 |
Args: |
|
|
1168 |
concatenated_features (torch.Tensor): Feature map with shape [batch, channels, height, width]. |
|
|
1169 |
resize_boxes (torch.Tensor): Boxes with shape [num_boxes, 5], where each row is [batch, x1, y1, x2, y2]. |
|
|
1170 |
|
|
|
1171 |
Returns: |
|
|
1172 |
torch.Tensor: Tensor containing the ROI features with shape [num_boxes, channels, roi_height, roi_width]. |
|
|
1173 |
""" |
|
|
1174 |
# Initialize a list to store ROI features for each box |
|
|
1175 |
roi_features_list = [] |
|
|
1176 |
|
|
|
1177 |
for box_idx in range(resize_boxes.size(0)): |
|
|
1178 |
# Extract box coordinates |
|
|
1179 |
box_coords = resize_boxes[box_idx, 1:] |
|
|
1180 |
|
|
|
1181 |
# Calculate the spatial coordinates of the box |
|
|
1182 |
box_x1, box_y1, box_x2, box_y2 = box_coords |
|
|
1183 |
roi_x1 = (box_x1 / concatenated_features.size(3)) * concatenated_features.size(3) |
|
|
1184 |
roi_y1 = (box_y1 / concatenated_features.size(2)) * concatenated_features.size(2) |
|
|
1185 |
roi_x2 = (box_x2 / concatenated_features.size(3)) * concatenated_features.size(3) |
|
|
1186 |
roi_y2 = (box_y2 / concatenated_features.size(2)) * concatenated_features.size(2) |
|
|
1187 |
|
|
|
1188 |
# Convert to integer indices |
|
|
1189 |
roi_x1, roi_y1, roi_x2, roi_y2 = map(int, [roi_x1, roi_y1, roi_x2, roi_y2]) |
|
|
1190 |
|
|
|
1191 |
# Extract ROI from the feature map |
|
|
1192 |
roi_features = concatenated_features[:, :, roi_y1:roi_y2, roi_x1:roi_x2] |
|
|
1193 |
|
|
|
1194 |
# Append the ROI features to the list |
|
|
1195 |
roi_features_list.append(roi_features) |
|
|
1196 |
|
|
|
1197 |
|
|
|
1198 |
return roi_features_list |
|
|
1199 |
|
|
|
1200 |
import numpy as np |
|
|
1201 |
import matplotlib.pyplot as plt |
|
|
1202 |
import matplotlib.patches as patches |
|
|
1203 |
import torch |
|
|
1204 |
|
|
|
1205 |
def plot_multi_channel_feature_map_with_boxes(feature_map, boxes, channels, title, save_path=None): |
|
|
1206 |
fig, axs = plt.subplots(1, len(channels) + 1, figsize=(12, 4)) |
|
|
1207 |
|
|
|
1208 |
for i, channel in enumerate(channels): |
|
|
1209 |
axs[i].imshow(feature_map[0, channel].cpu().detach().numpy(), cmap='viridis', aspect='auto') |
|
|
1210 |
axs[i].set_title(f'Channel {channel}') |
|
|
1211 |
|
|
|
1212 |
# Plot bounding boxes on the last axis |
|
|
1213 |
axs[-1].imshow(feature_map[0, channels[-1]].cpu().detach().numpy(), cmap='viridis', aspect='auto') |
|
|
1214 |
axs[-1].set_title('Bounding Boxes') |
|
|
1215 |
|
|
|
1216 |
for box in range(len(boxes.shape)): |
|
|
1217 |
xmin, ymin, xmax, ymax = boxes.cpu().detach().numpy() |
|
|
1218 |
rect = patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, linewidth=1, edgecolor='r', facecolor='none') |
|
|
1219 |
axs[-1].add_patch(rect) |
|
|
1220 |
|
|
|
1221 |
fig.suptitle(title) |
|
|
1222 |
|
|
|
1223 |
# Save the image if save_path is provided |
|
|
1224 |
if save_path: |
|
|
1225 |
plt.savefig(save_path) |
|
|
1226 |
print(f"Image saved at: {save_path}") |
|
|
1227 |
else: |
|
|
1228 |
plt.show() |
|
|
1229 |
|
|
|
1230 |
# Denormalize the box |
|
|
1231 |
def xywh_to_xyxy(xywh): |
|
|
1232 |
x_center, y_center, width, height = xywh |
|
|
1233 |
x_min = x_center - width / 2 |
|
|
1234 |
y_min = y_center - height / 2 |
|
|
1235 |
x_max = x_center + width / 2 |
|
|
1236 |
y_max = y_center + height / 2 |
|
|
1237 |
return torch.tensor([x_min, y_min, x_max, y_max]) |
|
|
1238 |
|
|
|
1239 |
|
|
|
1240 |
def get_fixed_xyxy(normalized_xyxy,int_feat): |
|
|
1241 |
x_min, y_min, x_max, y_max = normalized_xyxy.int() |
|
|
1242 |
|
|
|
1243 |
if x_min == x_max: |
|
|
1244 |
x_max += 1 |
|
|
1245 |
|
|
|
1246 |
if y_min == y_max: |
|
|
1247 |
y_max += 1 |
|
|
1248 |
|
|
|
1249 |
if x_min == x_max and x_max == int_feat.size(2): |
|
|
1250 |
x_min -= 1 |
|
|
1251 |
|
|
|
1252 |
if y_min == y_max and y_max == int_feat.size(1): |
|
|
1253 |
y_min -= 1 |
|
|
1254 |
|
|
|
1255 |
return x_min, y_min, x_max, y_max |
|
|
1256 |
# Variables ------------------------------------------------------------------------------------------------------------ |