--- a
+++ b/utils/dataloaders.py
@@ -0,0 +1,1262 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Dataloaders and dataset utils
+"""
+
+import contextlib
+import glob
+import hashlib
+import json
+import math
+import os
+import random
+import shutil
+import time
+from itertools import repeat
+from multiprocessing.pool import Pool, ThreadPool
+from pathlib import Path
+from threading import Thread
+from urllib.parse import urlparse
+
+import numpy as np
+import psutil
+import torch
+import torch.nn.functional as F
+import torchvision
+import yaml
+from PIL import ExifTags, Image, ImageOps
+from torch.utils.data import DataLoader, Dataset, dataloader, distributed
+from tqdm import tqdm
+
+from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste,
+                                 letterbox, mixup, random_perspective)
+from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, check_dataset, check_requirements,
+                           check_yaml, clean_str, cv2, is_colab, is_kaggle, segments2boxes, unzip_file, xyn2xy,
+                           xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
+from utils.torch_utils import torch_distributed_zero_first
+
+# Parameters
+HELP_URL = 'See https://docs.ultralytics.com/yolov5/tutorials/train_custom_data'
+IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm'  # include image suffixes
+VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv'  # include video suffixes
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true'  # global pin_memory for dataloaders
+
+# Get orientation exif tag
+for orientation in ExifTags.TAGS.keys():
+    if ExifTags.TAGS[orientation] == 'Orientation':
+        break
+
+
+def get_hash(paths):
+    # Returns a single hash value of a list of paths (files or dirs)
+    size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
+    h = hashlib.sha256(str(size).encode())  # hash sizes
+    h.update(''.join(paths).encode())  # hash paths
+    return h.hexdigest()  # return hash
+
+
+def exif_size(img):
+    # Returns exif-corrected PIL size
+    s = img.size  # (width, height)
+    with contextlib.suppress(Exception):
+        rotation = dict(img._getexif().items())[orientation]
+        if rotation in [6, 8]:  # rotation 270 or 90
+            s = (s[1], s[0])
+    return s
+
+
+def exif_transpose(image):
+    """
+    Transpose a PIL image accordingly if it has an EXIF Orientation tag.
+    Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
+
+    :param image: The image to transpose.
+    :return: An image.
+    """
+    exif = image.getexif()
+    orientation = exif.get(0x0112, 1)  # default 1
+    if orientation > 1:
+        method = {
+            2: Image.FLIP_LEFT_RIGHT,
+            3: Image.ROTATE_180,
+            4: Image.FLIP_TOP_BOTTOM,
+            5: Image.TRANSPOSE,
+            6: Image.ROTATE_270,
+            7: Image.TRANSVERSE,
+            8: Image.ROTATE_90}.get(orientation)
+        if method is not None:
+            image = image.transpose(method)
+            del exif[0x0112]
+            image.info['exif'] = exif.tobytes()
+    return image
+
+
+def seed_worker(worker_id):
+    # Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
+    worker_seed = torch.initial_seed() % 2 ** 32
+    np.random.seed(worker_seed)
+    random.seed(worker_seed)
+
+
+# Inherit from DistributedSampler and override iterator
+# https://github.com/pytorch/pytorch/blob/master/torch/utils/data/distributed.py
+class SmartDistributedSampler(distributed.DistributedSampler):
+
+    def __iter__(self):
+        # deterministically shuffle based on epoch and seed
+        g = torch.Generator()
+        g.manual_seed(self.seed + self.epoch)
+
+        # determine the the eventual size (n) of self.indices (DDP indices)
+        n = int((len(self.dataset) - self.rank - 1) / self.num_replicas) + 1  # num_replicas == WORLD_SIZE
+        idx = torch.randperm(n, generator=g)
+        if not self.shuffle:
+            idx = idx.sort()[0]
+
+        idx = idx.tolist()
+        if self.drop_last:
+            idx = idx[:self.num_samples]
+        else:
+            padding_size = self.num_samples - len(idx)
+            if padding_size <= len(idx):
+                idx += idx[:padding_size]
+            else:
+                idx += (idx * math.ceil(padding_size / len(idx)))[:padding_size]
+
+        return iter(idx)
+
+
+def create_dataloader(path,
+                      imgsz,
+                      batch_size,
+                      stride,
+                      single_cls=False,
+                      hyp=None,
+                      augment=False,
+                      cache=False,
+                      pad=0.0,
+                      rect=False,
+                      rank=-1,
+                      workers=8,
+                      image_weights=False,
+                      quad=False,
+                      prefix='',
+                      shuffle=False,
+                      seed=0):
+    if rect and shuffle:
+        LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
+        shuffle = False
+    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
+        dataset = LoadImagesAndLabels(
+            path,
+            imgsz,
+            batch_size,
+            augment=augment,  # augmentation
+            hyp=hyp,  # hyperparameters
+            rect=rect,  # rectangular batches
+            cache_images=cache,
+            single_cls=single_cls,
+            stride=int(stride),
+            pad=pad,
+            image_weights=image_weights,
+            prefix=prefix,
+            rank=rank)
+
+    batch_size = min(batch_size, len(dataset))
+    nd = torch.cuda.device_count()  # number of CUDA devices
+    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])  # number of workers
+    sampler = None if rank == -1 else SmartDistributedSampler(dataset, shuffle=shuffle)
+    loader = DataLoader if image_weights else InfiniteDataLoader  # only DataLoader allows for attribute updates
+    generator = torch.Generator()
+    generator.manual_seed(6148914691236517205 + seed + RANK)
+    return loader(dataset,
+                  batch_size=batch_size,
+                  shuffle=shuffle and sampler is None,
+                  num_workers=nw,
+                  sampler=sampler,
+                  pin_memory=PIN_MEMORY,
+                  collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn,
+                  worker_init_fn=seed_worker,
+                  generator=generator), dataset
+
+
+class InfiniteDataLoader(dataloader.DataLoader):
+    """ Dataloader that reuses workers
+
+    Uses same syntax as vanilla DataLoader
+    """
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
+        self.iterator = super().__iter__()
+
+    def __len__(self):
+        return len(self.batch_sampler.sampler)
+
+    def __iter__(self):
+        for _ in range(len(self)):
+            yield next(self.iterator)
+
+
+class _RepeatSampler:
+    """ Sampler that repeats forever
+
+    Args:
+        sampler (Sampler)
+    """
+
+    def __init__(self, sampler):
+        self.sampler = sampler
+
+    def __iter__(self):
+        while True:
+            yield from iter(self.sampler)
+
+
+class LoadScreenshots:
+    # YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"`
+    def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None):
+        # source = [screen_number left top width height] (pixels)
+        check_requirements('mss')
+        import mss
+
+        source, *params = source.split()
+        self.screen, left, top, width, height = 0, None, None, None, None  # default to full screen 0
+        if len(params) == 1:
+            self.screen = int(params[0])
+        elif len(params) == 4:
+            left, top, width, height = (int(x) for x in params)
+        elif len(params) == 5:
+            self.screen, left, top, width, height = (int(x) for x in params)
+        self.img_size = img_size
+        self.stride = stride
+        self.transforms = transforms
+        self.auto = auto
+        self.mode = 'stream'
+        self.frame = 0
+        self.sct = mss.mss()
+
+        # Parse monitor shape
+        monitor = self.sct.monitors[self.screen]
+        self.top = monitor['top'] if top is None else (monitor['top'] + top)
+        self.left = monitor['left'] if left is None else (monitor['left'] + left)
+        self.width = width or monitor['width']
+        self.height = height or monitor['height']
+        self.monitor = {'left': self.left, 'top': self.top, 'width': self.width, 'height': self.height}
+
+    def __iter__(self):
+        return self
+
+    def __next__(self):
+        # mss screen capture: get raw pixels from the screen as np array
+        im0 = np.array(self.sct.grab(self.monitor))[:, :, :3]  # [:, :, :3] BGRA to BGR
+        s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: '
+
+        if self.transforms:
+            im = self.transforms(im0)  # transforms
+        else:
+            im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0]  # padded resize
+            im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+            im = np.ascontiguousarray(im)  # contiguous
+        self.frame += 1
+        return str(self.screen), im, im0, None, s  # screen, img, original img, im0s, s
+
+
+class LoadImages:
+    # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
+    def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
+        if isinstance(path, str) and Path(path).suffix == '.txt':  # *.txt file with img/vid/dir on each line
+            path = Path(path).read_text().rsplit()
+        files = []
+        for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
+            p = str(Path(p).resolve())
+            if '*' in p:
+                files.extend(sorted(glob.glob(p, recursive=True)))  # glob
+            elif os.path.isdir(p):
+                files.extend(sorted(glob.glob(os.path.join(p, '*.*'))))  # dir
+            elif os.path.isfile(p):
+                files.append(p)  # files
+            else:
+                raise FileNotFoundError(f'{p} does not exist')
+
+        images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
+        videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
+        ni, nv = len(images), len(videos)
+
+        self.img_size = img_size
+        self.stride = stride
+        self.files = images + videos
+        self.nf = ni + nv  # number of files
+        self.video_flag = [False] * ni + [True] * nv
+        self.mode = 'image'
+        self.auto = auto
+        self.transforms = transforms  # optional
+        self.vid_stride = vid_stride  # video frame-rate stride
+        if any(videos):
+            self._new_video(videos[0])  # new video
+        else:
+            self.cap = None
+        assert self.nf > 0, f'No images or videos found in {p}. ' \
+                            f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
+
+    def __iter__(self):
+        self.count = 0
+        return self
+
+    def __next__(self):
+        if self.count == self.nf:
+            raise StopIteration
+        path = self.files[self.count]
+
+        if self.video_flag[self.count]:
+            # Read video
+            self.mode = 'video'
+            for _ in range(self.vid_stride):
+                self.cap.grab()
+            ret_val, im0 = self.cap.retrieve()
+            while not ret_val:
+                self.count += 1
+                self.cap.release()
+                if self.count == self.nf:  # last video
+                    raise StopIteration
+                path = self.files[self.count]
+                self._new_video(path)
+                ret_val, im0 = self.cap.read()
+
+            self.frame += 1
+            # im0 = self._cv2_rotate(im0)  # for use if cv2 autorotation is False
+            s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
+
+        else:
+            # Read image
+            self.count += 1
+            im0 = cv2.imread(path)  # BGR
+            self.orig_img = im0.copy()
+            pil_img = Image.fromarray(im0)
+            image = pil_img.resize(self.img_size, Image.LANCZOS)
+            im0 = np.array(image)
+            assert im0 is not None, f'Image Not Found {path}'
+            s = f'image {self.count}/{self.nf} {path}: '
+
+        if self.transforms:
+            im = self.transforms(im0)  # transforms
+        else:
+            im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0]  # padded resize
+            im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+            im = np.ascontiguousarray(im)  # contiguous
+
+        return path, im, im0, self.cap, s, self.orig_img
+
+    def _new_video(self, path):
+        # Create a new video capture object
+        self.frame = 0
+        self.cap = cv2.VideoCapture(path)
+        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
+        self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META))  # rotation degrees
+        # self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0)  # disable https://github.com/ultralytics/yolov5/issues/8493
+
+    def _cv2_rotate(self, im):
+        # Rotate a cv2 video manually
+        if self.orientation == 0:
+            return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
+        elif self.orientation == 180:
+            return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
+        elif self.orientation == 90:
+            return cv2.rotate(im, cv2.ROTATE_180)
+        return im
+
+    def __len__(self):
+        return self.nf  # number of files
+
+
+class LoadStreams:
+    # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP streams`
+    def __init__(self, sources='file.streams', img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
+        torch.backends.cudnn.benchmark = True  # faster for fixed-size inference
+        self.mode = 'stream'
+        self.img_size = img_size
+        self.stride = stride
+        self.vid_stride = vid_stride  # video frame-rate stride
+        sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
+        n = len(sources)
+        self.sources = [clean_str(x) for x in sources]  # clean source names for later
+        self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
+        for i, s in enumerate(sources):  # index, source
+            # Start thread to read frames from video stream
+            st = f'{i + 1}/{n}: {s}... '
+            if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'):  # if source is YouTube video
+                # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/LNwODJXcvt4'
+                check_requirements(('pafy', 'youtube_dl==2020.12.2'))
+                import pafy
+                s = pafy.new(s).getbest(preftype='mp4').url  # YouTube URL
+            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
+            if s == 0:
+                assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
+                assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
+            cap = cv2.VideoCapture(s)
+            assert cap.isOpened(), f'{st}Failed to open {s}'
+            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+            fps = cap.get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
+            self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')  # infinite stream fallback
+            self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30  # 30 FPS fallback
+
+            _, self.imgs[i] = cap.read()  # guarantee first frame
+            self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
+            LOGGER.info(f'{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)')
+            self.threads[i].start()
+        LOGGER.info('')  # newline
+
+        # check for common shapes
+        s = np.stack([letterbox(x, img_size, stride=stride, auto=auto)[0].shape for x in self.imgs])
+        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
+        self.auto = auto and self.rect
+        self.transforms = transforms  # optional
+        if not self.rect:
+            LOGGER.warning('WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.')
+
+    def update(self, i, cap, stream):
+        # Read stream `i` frames in daemon thread
+        n, f = 0, self.frames[i]  # frame number, frame array
+        while cap.isOpened() and n < f:
+            n += 1
+            cap.grab()  # .read() = .grab() followed by .retrieve()
+            if n % self.vid_stride == 0:
+                success, im = cap.retrieve()
+                if success:
+                    self.imgs[i] = im
+                else:
+                    LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
+                    self.imgs[i] = np.zeros_like(self.imgs[i])
+                    cap.open(stream)  # re-open stream if signal was lost
+            time.sleep(0.0)  # wait time
+
+    def __iter__(self):
+        self.count = -1
+        return self
+
+    def __next__(self):
+        self.count += 1
+        if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'):  # q to quit
+            cv2.destroyAllWindows()
+            raise StopIteration
+
+        im0 = self.imgs.copy()
+        if self.transforms:
+            im = np.stack([self.transforms(x) for x in im0])  # transforms
+        else:
+            im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in im0])  # resize
+            im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW
+            im = np.ascontiguousarray(im)  # contiguous
+
+        return self.sources, im, im0, None, ''
+
+    def __len__(self):
+        return len(self.sources)  # 1E12 frames = 32 streams at 30 FPS for 30 years
+
+
+def img2label_paths(img_paths):
+    # Define label paths as a function of image paths
+    sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}'  # /images/, /labels/ substrings
+    return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
+
+
+class LoadImagesAndLabels(Dataset):
+    # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
+    cache_version = 0.6  # dataset labels *.cache version
+    rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
+
+    def __init__(self,
+                 path,
+                 img_size=640,
+                 batch_size=16,
+                 augment=False,
+                 hyp=None,
+                 rect=False,
+                 image_weights=False,
+                 cache_images=False,
+                 single_cls=False,
+                 stride=32,
+                 pad=0.0,
+                 min_items=0,
+                 prefix='',
+                 rank=-1,
+                 seed=0):
+        self.img_size = img_size
+        self.augment = augment
+        self.hyp = hyp
+        self.image_weights = image_weights
+        self.rect = False if image_weights else rect
+        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
+        self.mosaic_border = [-img_size // 2, -img_size // 2]
+        self.stride = stride
+        self.path = path
+        self.albumentations = Albumentations(size=img_size) if augment else None
+
+        try:
+            f = []  # image files
+            for p in path if isinstance(path, list) else [path]:
+                p = Path(p)  # os-agnostic
+                if p.is_dir():  # dir
+                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
+                    # f = list(p.rglob('*.*'))  # pathlib
+                elif p.is_file():  # file
+                    with open(p) as t:
+                        t = t.read().strip().splitlines()
+                        parent = str(p.parent) + os.sep
+                        f += [x.replace('./', parent, 1) if x.startswith('./') else x for x in t]  # to global path
+                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # to global path (pathlib)
+                else:
+                    raise FileNotFoundError(f'{prefix}{p} does not exist')
+            self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
+            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
+            assert self.im_files, f'{prefix}No images found'
+        except Exception as e:
+            raise Exception(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e
+
+        # Check cache
+        self.label_files = img2label_paths(self.im_files)  # labels
+        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
+        try:
+            cache, exists = np.load(cache_path, allow_pickle=True).item(), True  # load dict
+            assert cache['version'] == self.cache_version  # matches current version
+            assert cache['hash'] == get_hash(self.label_files + self.im_files)  # identical hash
+        except Exception:
+            cache, exists = self.cache_labels(cache_path, prefix), False  # run cache ops
+
+        # Display cache
+        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupt, total
+        if exists and LOCAL_RANK in {-1, 0}:
+            d = f'Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt'
+            tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT)  # display cache results
+            if cache['msgs']:
+                LOGGER.info('\n'.join(cache['msgs']))  # display warnings
+        assert nf > 0 or not augment, f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}'
+
+        # Read cache
+        [cache.pop(k) for k in ('hash', 'version', 'msgs')]  # remove items
+        labels, shapes, self.segments = zip(*cache.values())
+        nl = len(np.concatenate(labels, 0))  # number of labels
+        assert nl > 0 or not augment, f'{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}'
+        self.labels = list(labels)
+        self.shapes = np.array(shapes)
+        self.im_files = list(cache.keys())  # update
+        self.label_files = img2label_paths(cache.keys())  # update
+
+        # Filter images
+        if min_items:
+            include = np.array([len(x) >= min_items for x in self.labels]).nonzero()[0].astype(int)
+            LOGGER.info(f'{prefix}{n - len(include)}/{n} images filtered from dataset')
+            self.im_files = [self.im_files[i] for i in include]
+            self.label_files = [self.label_files[i] for i in include]
+            self.labels = [self.labels[i] for i in include]
+            self.segments = [self.segments[i] for i in include]
+            self.shapes = self.shapes[include]  # wh
+
+        # Create indices
+        n = len(self.shapes)  # number of images
+        bi = np.floor(np.arange(n) / batch_size).astype(int)  # batch index
+        nb = bi[-1] + 1  # number of batches
+        self.batch = bi  # batch index of image
+        self.n = n
+        self.indices = np.arange(n)
+        if rank > -1:  # DDP indices (see: SmartDistributedSampler)
+            # force each rank (i.e. GPU process) to sample the same subset of data on every epoch
+            self.indices = self.indices[np.random.RandomState(seed=seed).permutation(n) % WORLD_SIZE == RANK]
+
+        # Update labels
+        include_class = []  # filter labels to include only these classes (optional)
+        self.segments = list(self.segments)
+        include_class_array = np.array(include_class).reshape(1, -1)
+        for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
+            if include_class:
+                j = (label[:, 0:1] == include_class_array).any(1)
+                self.labels[i] = label[j]
+                if segment:
+                    self.segments[i] = [segment[idx] for idx, elem in enumerate(j) if elem]
+            if single_cls:  # single-class training, merge all classes into 0
+                self.labels[i][:, 0] = 0
+
+        # Rectangular Training
+        if self.rect:
+            # Sort by aspect ratio
+            s = self.shapes  # wh
+            ar = s[:, 1] / s[:, 0]  # aspect ratio
+            irect = ar.argsort()
+            self.im_files = [self.im_files[i] for i in irect]
+            self.label_files = [self.label_files[i] for i in irect]
+            self.labels = [self.labels[i] for i in irect]
+            self.segments = [self.segments[i] for i in irect]
+            self.shapes = s[irect]  # wh
+            ar = ar[irect]
+
+            # Set training image shapes
+            shapes = [[1, 1]] * nb
+            for i in range(nb):
+                ari = ar[bi == i]
+                mini, maxi = ari.min(), ari.max()
+                if maxi < 1:
+                    shapes[i] = [maxi, 1]
+                elif mini > 1:
+                    shapes[i] = [1, 1 / mini]
+
+            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
+
+        # Cache images into RAM/disk for faster training
+        if cache_images == 'ram' and not self.check_cache_ram(prefix=prefix):
+            cache_images = False
+        self.ims = [None] * n
+        self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
+        if cache_images:
+            b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
+            self.im_hw0, self.im_hw = [None] * n, [None] * n
+            fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
+            results = ThreadPool(NUM_THREADS).imap(lambda i: (i, fcn(i)), self.indices)
+            pbar = tqdm(results, total=len(self.indices), bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
+            for i, x in pbar:
+                if cache_images == 'disk':
+                    b += self.npy_files[i].stat().st_size
+                else:  # 'ram'
+                    self.ims[i], self.im_hw0[i], self.im_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
+                    b += self.ims[i].nbytes * WORLD_SIZE
+                pbar.desc = f'{prefix}Caching images ({b / gb:.1f}GB {cache_images})'
+            pbar.close()
+
+    def check_cache_ram(self, safety_margin=0.1, prefix=''):
+        # Check image caching requirements vs available memory
+        b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
+        n = min(self.n, 30)  # extrapolate from 30 random images
+        for _ in range(n):
+            im = cv2.imread(random.choice(self.im_files))  # sample image
+            ratio = self.img_size / max(im.shape[0], im.shape[1])  # max(h, w)  # ratio
+            b += im.nbytes * ratio ** 2
+        mem_required = b * self.n / n  # GB required to cache dataset into RAM
+        mem = psutil.virtual_memory()
+        cache = mem_required * (1 + safety_margin) < mem.available  # to cache or not to cache, that is the question
+        if not cache:
+            LOGGER.info(f'{prefix}{mem_required / gb:.1f}GB RAM required, '
+                        f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, '
+                        f"{'caching images ✅' if cache else 'not caching images ⚠️'}")
+        return cache
+
+    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
+        # Cache dataset labels, check images and read shapes
+        x = {}  # dict
+        blood = True
+        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
+        desc = f'{prefix}Scanning {path.parent / path.stem}...'
+        with Pool(NUM_THREADS) as pool:
+            pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix)), blood),
+                        desc=desc,
+                        total=len(self.im_files),
+                        bar_format=TQDM_BAR_FORMAT)
+            for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
+                nm += nm_f
+                nf += nf_f
+                ne += ne_f
+                nc += nc_f
+                if im_file:
+                    x[im_file] = [lb, shape, segments]
+                if msg:
+                    msgs.append(msg)
+                pbar.desc = f'{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt'
+
+        pbar.close()
+        if msgs:
+            LOGGER.info('\n'.join(msgs))
+        if nf == 0:
+            LOGGER.warning(f'{prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}')
+        x['hash'] = get_hash(self.label_files + self.im_files)
+        x['results'] = nf, nm, ne, nc, len(self.im_files)
+        x['msgs'] = msgs  # warnings
+        x['version'] = self.cache_version  # cache version
+        try:
+            np.save(path, x)  # save cache for next time
+            path.with_suffix('.cache.npy').rename(path)  # remove .npy suffix
+            LOGGER.info(f'{prefix}New cache created: {path}')
+        except Exception as e:
+            LOGGER.warning(f'{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable: {e}')  # not writeable
+        return x
+
+    def __len__(self):
+        return len(self.im_files)
+
+    # def __iter__(self):
+    #     self.count = -1
+    #     print('ran dataset iter')
+    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
+    #     return self
+
+    def __getitem__(self, index):
+        index = self.indices[index]  # linear, shuffled, or image_weights
+
+        hyp = self.hyp
+        mosaic = self.mosaic and random.random() < hyp['mosaic']
+        if mosaic:
+            # Load mosaic
+            img, labels = self.load_mosaic(index)
+            shapes = None
+
+            # MixUp augmentation
+            if random.random() < hyp['mixup']:
+                img, labels = mixup(img, labels, *self.load_mosaic(random.choice(self.indices)))
+
+        else:
+            # Load image
+            img, (h0, w0), (h, w) = self.load_image(index)
+
+            # Letterbox
+            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
+            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
+
+            labels = self.labels[index].copy()
+            if labels.size:  # normalized xywh to pixel xyxy format
+                labels[:, 1:5] = xywhn2xyxy(labels[:, 1:5], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) # I changesd 1: to 1:5
+
+            if self.augment:
+                img, labels = random_perspective(img,
+                                                 labels,
+                                                 degrees=hyp['degrees'],
+                                                 translate=hyp['translate'],
+                                                 scale=hyp['scale'],
+                                                 shear=hyp['shear'],
+                                                 perspective=hyp['perspective'])
+
+        nl = len(labels)  # number of labels
+        if nl:
+            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
+
+        if self.augment:
+            # Albumentations
+            img, labels = self.albumentations(img, labels)
+            nl = len(labels)  # update after albumentations
+
+            # HSV color-space
+            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+            # Flip up-down
+            if random.random() < hyp['flipud']:
+                img = np.flipud(img)
+                if nl:
+                    labels[:, 2] = 1 - labels[:, 2]
+
+            # Flip left-right
+            if random.random() < hyp['fliplr']:
+                img = np.fliplr(img)
+                if nl:
+                    labels[:, 1] = 1 - labels[:, 1]
+
+            # Cutouts
+            # labels = cutout(img, labels, p=0.5)
+            # nl = len(labels)  # update after cutout
+
+        labels_out = torch.zeros((nl, 13)) # I chnaged 6 to 13
+        if nl:
+            labels_out[:, 1:] = torch.from_numpy(labels)
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return torch.from_numpy(img), labels_out, self.im_files[index], shapes
+
+    def load_image(self, i):
+        # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
+        im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
+        if im is None:  # not cached in RAM
+            if fn.exists():  # load npy
+                im = np.load(fn)
+            else:  # read image
+                im = cv2.imread(f)  # BGR
+                assert im is not None, f'Image Not Found {f}'
+            h0, w0 = im.shape[:2]  # orig hw
+            r = self.img_size / max(h0, w0)  # ratio
+            if r != 1:  # if sizes are not equal
+                interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
+                im = cv2.resize(im, (math.ceil(w0 * r), math.ceil(h0 * r)), interpolation=interp)
+            return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
+        return self.ims[i], self.im_hw0[i], self.im_hw[i]  # im, hw_original, hw_resized
+
+    def cache_images_to_disk(self, i):
+        # Saves an image as an *.npy file for faster loading
+        f = self.npy_files[i]
+        if not f.exists():
+            np.save(f.as_posix(), cv2.imread(self.im_files[i]))
+
+    def load_mosaic(self, index):
+        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
+        labels4, segments4 = [], []
+        s = self.img_size
+        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
+        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
+        random.shuffle(indices)
+        for i, index in enumerate(indices):
+            # Load image
+            img, _, (h, w) = self.load_image(index)
+
+            # place img in img4
+            if i == 0:  # top left
+                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
+            elif i == 1:  # top right
+                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+            elif i == 2:  # bottom left
+                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+            elif i == 3:  # bottom right
+                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
+            padw = x1a - x1b
+            padh = y1a - y1b
+
+            # Labels
+            labels, segments = self.labels[index].copy(), self.segments[index].copy()
+            if labels.size:
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
+                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+            labels4.append(labels)
+            segments4.extend(segments)
+
+        # Concat/clip labels
+        labels4 = np.concatenate(labels4, 0)
+        for x in (labels4[:, 1:], *segments4):
+            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+        # img4, labels4 = replicate(img4, labels4)  # replicate
+
+        # Augment
+        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
+        img4, labels4 = random_perspective(img4,
+                                           labels4,
+                                           segments4,
+                                           degrees=self.hyp['degrees'],
+                                           translate=self.hyp['translate'],
+                                           scale=self.hyp['scale'],
+                                           shear=self.hyp['shear'],
+                                           perspective=self.hyp['perspective'],
+                                           border=self.mosaic_border)  # border to remove
+
+        return img4, labels4
+
+    def load_mosaic9(self, index):
+        # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
+        labels9, segments9 = [], []
+        s = self.img_size
+        indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
+        random.shuffle(indices)
+        hp, wp = -1, -1  # height, width previous
+        for i, index in enumerate(indices):
+            # Load image
+            img, _, (h, w) = self.load_image(index)
+
+            # place img in img9
+            if i == 0:  # center
+                img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+                h0, w0 = h, w
+                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
+            elif i == 1:  # top
+                c = s, s - h, s + w, s
+            elif i == 2:  # top right
+                c = s + wp, s - h, s + wp + w, s
+            elif i == 3:  # right
+                c = s + w0, s, s + w0 + w, s + h
+            elif i == 4:  # bottom right
+                c = s + w0, s + hp, s + w0 + w, s + hp + h
+            elif i == 5:  # bottom
+                c = s + w0 - w, s + h0, s + w0, s + h0 + h
+            elif i == 6:  # bottom left
+                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
+            elif i == 7:  # left
+                c = s - w, s + h0 - h, s, s + h0
+            elif i == 8:  # top left
+                c = s - w, s + h0 - hp - h, s, s + h0 - hp
+
+            padx, pady = c[:2]
+            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords
+
+            # Labels
+            labels, segments = self.labels[index].copy(), self.segments[index].copy()
+            if labels.size:
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
+                segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
+            labels9.append(labels)
+            segments9.extend(segments)
+
+            # Image
+            img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
+            hp, wp = h, w  # height, width previous
+
+        # Offset
+        yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border)  # mosaic center x, y
+        img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
+
+        # Concat/clip labels
+        labels9 = np.concatenate(labels9, 0)
+        labels9[:, [1, 3]] -= xc
+        labels9[:, [2, 4]] -= yc
+        c = np.array([xc, yc])  # centers
+        segments9 = [x - c for x in segments9]
+
+        for x in (labels9[:, 1:], *segments9):
+            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+        # img9, labels9 = replicate(img9, labels9)  # replicate
+
+        # Augment
+        img9, labels9, segments9 = copy_paste(img9, labels9, segments9, p=self.hyp['copy_paste'])
+        img9, labels9 = random_perspective(img9,
+                                           labels9,
+                                           segments9,
+                                           degrees=self.hyp['degrees'],
+                                           translate=self.hyp['translate'],
+                                           scale=self.hyp['scale'],
+                                           shear=self.hyp['shear'],
+                                           perspective=self.hyp['perspective'],
+                                           border=self.mosaic_border)  # border to remove
+
+        return img9, labels9
+
+    @staticmethod
+    def collate_fn(batch):
+        im, label, path, shapes = zip(*batch)  # transposed
+        for i, lb in enumerate(label):
+            lb[:, 0] = i  # add target image index for build_targets()
+        return torch.stack(im, 0), torch.cat(label, 0), path, shapes
+
+    @staticmethod
+    def collate_fn4(batch):
+        im, label, path, shapes = zip(*batch)  # transposed
+        n = len(shapes) // 4
+        im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
+
+        ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
+        wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
+        s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]])  # scale
+        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
+            i *= 4
+            if random.random() < 0.5:
+                im1 = F.interpolate(im[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear',
+                                    align_corners=False)[0].type(im[i].type())
+                lb = label[i]
+            else:
+                im1 = torch.cat((torch.cat((im[i], im[i + 1]), 1), torch.cat((im[i + 2], im[i + 3]), 1)), 2)
+                lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
+            im4.append(im1)
+            label4.append(lb)
+
+        for i, lb in enumerate(label4):
+            lb[:, 0] = i  # add target image index for build_targets()
+
+        return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
+
+
+# Ancillary functions --------------------------------------------------------------------------------------------------
+def flatten_recursive(path=DATASETS_DIR / 'coco128'):
+    # Flatten a recursive directory by bringing all files to top level
+    new_path = Path(f'{str(path)}_flat')
+    if os.path.exists(new_path):
+        shutil.rmtree(new_path)  # delete output folder
+    os.makedirs(new_path)  # make new output folder
+    for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)):
+        shutil.copyfile(file, new_path / Path(file).name)
+
+
+def extract_boxes(path=DATASETS_DIR / 'coco128'):  # from utils.dataloaders import *; extract_boxes()
+    # Convert detection dataset into classification dataset, with one directory per class
+    path = Path(path)  # images dir
+    shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None  # remove existing
+    files = list(path.rglob('*.*'))
+    n = len(files)  # number of files
+    for im_file in tqdm(files, total=n):
+        if im_file.suffix[1:] in IMG_FORMATS:
+            # image
+            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
+            h, w = im.shape[:2]
+
+            # labels
+            lb_file = Path(img2label_paths([str(im_file)])[0])
+            if Path(lb_file).exists():
+                with open(lb_file) as f:
+                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels
+
+                for j, x in enumerate(lb):
+                    c = int(x[0])  # class
+                    f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'  # new filename
+                    if not f.parent.is_dir():
+                        f.parent.mkdir(parents=True)
+
+                    b = x[1:] * [w, h, w, h]  # box
+                    # b[2:] = b[2:].max()  # rectangle to square
+                    b[2:] = b[2:] * 1.2 + 3  # pad
+                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)
+
+                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image
+                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
+                    assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
+
+
+def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
+    """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
+    Usage: from utils.dataloaders import *; autosplit()
+    Arguments
+        path:            Path to images directory
+        weights:         Train, val, test weights (list, tuple)
+        annotated_only:  Only use images with an annotated txt file
+    """
+    path = Path(path)  # images dir
+    files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS)  # image files only
+    n = len(files)  # number of files
+    random.seed(0)  # for reproducibility
+    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split
+
+    txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']  # 3 txt files
+    for x in txt:
+        if (path.parent / x).exists():
+            (path.parent / x).unlink()  # remove existing
+
+    print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
+    for i, img in tqdm(zip(indices, files), total=n):
+        if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():  # check label
+            with open(path.parent / txt[i], 'a') as f:
+                f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n')  # add image to txt file
+
+
+def verify_image_label(args, blood=True):
+    # Verify one image-label pair
+    im_file, lb_file, prefix = args
+    nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', []  # number (missing, found, empty, corrupt), message, segments
+    try:
+        # verify images
+        im = Image.open(im_file)
+        im.verify()  # PIL verify
+        shape = exif_size(im)  # image size
+        assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
+        assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
+        if im.format.lower() in ('jpg', 'jpeg'):
+            with open(im_file, 'rb') as f:
+                f.seek(-2, 2)
+                if f.read() != b'\xff\xd9':  # corrupt JPEG
+                    ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
+                    msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved'
+
+        # verify labels
+        if os.path.isfile(lb_file):
+            nf = 1  # label found
+            with open(lb_file) as f:
+                lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
+                if not blood and any(len(x) > 6 for x in lb):  # is segment
+                    classes = np.array([x[0] for x in lb], dtype=np.float32)
+                    segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb]  # (cls, xy1...)
+                    lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
+                lb = np.array(lb, dtype=np.float32)
+            nl = len(lb)
+            if nl:
+                assert lb.shape[1] == 12, f'labels require 5 columns, {lb.shape[1]} columns detected' # I changed here
+                assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
+                assert (lb[:, 1:5] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:5][lb[:, 1:5] > 1]}'
+                _, i = np.unique(lb, axis=0, return_index=True)
+                if len(i) < nl:  # duplicate row check
+                    lb = lb[i]  # remove duplicates
+                    if segments:
+                        segments = [segments[x] for x in i]
+                    msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed'
+            else:
+                ne = 1  # label empty
+                lb = np.zeros((0, 12), dtype=np.float32)
+        else:
+            nm = 1  # label missing
+            lb = np.zeros((0, 12), dtype=np.float32)
+        return im_file, lb, shape, segments, nm, nf, ne, nc, msg
+    except Exception as e:
+        nc = 1
+        msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}'
+        return [None, None, None, None, nm, nf, ne, nc, msg]
+
+
+class HUBDatasetStats():
+    """ Class for generating HUB dataset JSON and `-hub` dataset directory
+
+    Arguments
+        path:           Path to data.yaml or data.zip (with data.yaml inside data.zip)
+        autodownload:   Attempt to download dataset if not found locally
+
+    Usage
+        from utils.dataloaders import HUBDatasetStats
+        stats = HUBDatasetStats('coco128.yaml', autodownload=True)  # usage 1
+        stats = HUBDatasetStats('path/to/coco128.zip')  # usage 2
+        stats.get_json(save=False)
+        stats.process_images()
+    """
+
+    def __init__(self, path='coco128.yaml', autodownload=False):
+        # Initialize class
+        zipped, data_dir, yaml_path = self._unzip(Path(path))
+        try:
+            with open(check_yaml(yaml_path), errors='ignore') as f:
+                data = yaml.safe_load(f)  # data dict
+                if zipped:
+                    data['path'] = data_dir
+        except Exception as e:
+            raise Exception('error/HUB/dataset_stats/yaml_load') from e
+
+        check_dataset(data, autodownload)  # download dataset if missing
+        self.hub_dir = Path(data['path'] + '-hub')
+        self.im_dir = self.hub_dir / 'images'
+        self.im_dir.mkdir(parents=True, exist_ok=True)  # makes /images
+        self.stats = {'nc': data['nc'], 'names': list(data['names'].values())}  # statistics dictionary
+        self.data = data
+
+    @staticmethod
+    def _find_yaml(dir):
+        # Return data.yaml file
+        files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml'))  # try root level first and then recursive
+        assert files, f'No *.yaml file found in {dir}'
+        if len(files) > 1:
+            files = [f for f in files if f.stem == dir.stem]  # prefer *.yaml files that match dir name
+            assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
+        assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
+        return files[0]
+
+    def _unzip(self, path):
+        # Unzip data.zip
+        if not str(path).endswith('.zip'):  # path is data.yaml
+            return False, None, path
+        assert Path(path).is_file(), f'Error unzipping {path}, file not found'
+        unzip_file(path, path=path.parent)
+        dir = path.with_suffix('')  # dataset directory == zip name
+        assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/'
+        return True, str(dir), self._find_yaml(dir)  # zipped, data_dir, yaml_path
+
+    def _hub_ops(self, f, max_dim=1920):
+        # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
+        f_new = self.im_dir / Path(f).name  # dataset-hub image filename
+        try:  # use PIL
+            im = Image.open(f)
+            r = max_dim / max(im.height, im.width)  # ratio
+            if r < 1.0:  # image too large
+                im = im.resize((int(im.width * r), int(im.height * r)))
+            im.save(f_new, 'JPEG', quality=50, optimize=True)  # save
+        except Exception as e:  # use OpenCV
+            LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}')
+            im = cv2.imread(f)
+            im_height, im_width = im.shape[:2]
+            r = max_dim / max(im_height, im_width)  # ratio
+            if r < 1.0:  # image too large
+                im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
+            cv2.imwrite(str(f_new), im)
+
+    def get_json(self, save=False, verbose=False):
+        # Return dataset JSON for Ultralytics HUB
+        def _round(labels):
+            # Update labels to integer class and 6 decimal place floats
+            return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
+
+        for split in 'train', 'val', 'test':
+            if self.data.get(split) is None:
+                self.stats[split] = None  # i.e. no test set
+                continue
+            dataset = LoadImagesAndLabels(self.data[split])  # load dataset
+            x = np.array([
+                np.bincount(label[:, 0].astype(int), minlength=self.data['nc'])
+                for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics')])  # shape(128x80)
+            self.stats[split] = {
+                'instance_stats': {
+                    'total': int(x.sum()),
+                    'per_class': x.sum(0).tolist()},
+                'image_stats': {
+                    'total': dataset.n,
+                    'unlabelled': int(np.all(x == 0, 1).sum()),
+                    'per_class': (x > 0).sum(0).tolist()},
+                'labels': [{
+                    str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]}
+
+        # Save, print and return
+        if save:
+            stats_path = self.hub_dir / 'stats.json'
+            print(f'Saving {stats_path.resolve()}...')
+            with open(stats_path, 'w') as f:
+                json.dump(self.stats, f)  # save stats.json
+        if verbose:
+            print(json.dumps(self.stats, indent=2, sort_keys=False))
+        return self.stats
+
+    def process_images(self):
+        # Compress images for Ultralytics HUB
+        for split in 'train', 'val', 'test':
+            if self.data.get(split) is None:
+                continue
+            dataset = LoadImagesAndLabels(self.data[split])  # load dataset
+            desc = f'{split} images'
+            for _ in tqdm(ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files), total=dataset.n, desc=desc):
+                pass
+        print(f'Done. All images saved to {self.im_dir}')
+        return self.im_dir
+
+
+# Classification dataloaders -------------------------------------------------------------------------------------------
+class ClassificationDataset(torchvision.datasets.ImageFolder):
+    """
+    YOLOv5 Classification Dataset.
+    Arguments
+        root:  Dataset path
+        transform:  torchvision transforms, used by default
+        album_transform: Albumentations transforms, used if installed
+    """
+
+    def __init__(self, root, augment, imgsz, cache=False):
+        super().__init__(root=root)
+        self.torch_transforms = classify_transforms(imgsz)
+        self.album_transforms = classify_albumentations(augment, imgsz) if augment else None
+        self.cache_ram = cache is True or cache == 'ram'
+        self.cache_disk = cache == 'disk'
+        self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples]  # file, index, npy, im
+
+    def __getitem__(self, i):
+        f, j, fn, im = self.samples[i]  # filename, index, filename.with_suffix('.npy'), image
+        if self.cache_ram and im is None:
+            im = self.samples[i][3] = cv2.imread(f)
+        elif self.cache_disk:
+            if not fn.exists():  # load npy
+                np.save(fn.as_posix(), cv2.imread(f))
+            im = np.load(fn)
+        else:  # read image
+            im = cv2.imread(f)  # BGR
+        if self.album_transforms:
+            sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))['image']
+        else:
+            sample = self.torch_transforms(im)
+        return sample, j
+
+
+def create_classification_dataloader(path,
+                                     imgsz=224,
+                                     batch_size=16,
+                                     augment=True,
+                                     cache=False,
+                                     rank=-1,
+                                     workers=8,
+                                     shuffle=True):
+    # Returns Dataloader object to be used with YOLOv5 Classifier
+    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
+        dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
+    batch_size = min(batch_size, len(dataset))
+    nd = torch.cuda.device_count()
+    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
+    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
+    generator = torch.Generator()
+    generator.manual_seed(6148914691236517205 + RANK)
+    return InfiniteDataLoader(dataset,
+                              batch_size=batch_size,
+                              shuffle=shuffle and sampler is None,
+                              num_workers=nw,
+                              sampler=sampler,
+                              pin_memory=PIN_MEMORY,
+                              worker_init_fn=seed_worker,
+                              generator=generator)  # or DataLoader(persistent_workers=True)