|
a |
|
b/utils/autobatch.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Auto-batch utils |
|
|
4 |
""" |
|
|
5 |
|
|
|
6 |
from copy import deepcopy |
|
|
7 |
|
|
|
8 |
import numpy as np |
|
|
9 |
import torch |
|
|
10 |
|
|
|
11 |
from utils.general import LOGGER, colorstr |
|
|
12 |
from utils.torch_utils import profile |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
def check_train_batch_size(model, imgsz=640, amp=True): |
|
|
16 |
# Check YOLOv5 training batch size |
|
|
17 |
with torch.cuda.amp.autocast(amp): |
|
|
18 |
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
def autobatch(model, imgsz=640, fraction=0.8, batch_size=16): |
|
|
22 |
# Automatically estimate best YOLOv5 batch size to use `fraction` of available CUDA memory |
|
|
23 |
# Usage: |
|
|
24 |
# import torch |
|
|
25 |
# from utils.autobatch import autobatch |
|
|
26 |
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False) |
|
|
27 |
# print(autobatch(model)) |
|
|
28 |
|
|
|
29 |
# Check device |
|
|
30 |
prefix = colorstr('AutoBatch: ') |
|
|
31 |
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}') |
|
|
32 |
device = next(model.parameters()).device # get model device |
|
|
33 |
if device.type == 'cpu': |
|
|
34 |
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}') |
|
|
35 |
return batch_size |
|
|
36 |
if torch.backends.cudnn.benchmark: |
|
|
37 |
LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}') |
|
|
38 |
return batch_size |
|
|
39 |
|
|
|
40 |
# Inspect CUDA memory |
|
|
41 |
gb = 1 << 30 # bytes to GiB (1024 ** 3) |
|
|
42 |
d = str(device).upper() # 'CUDA:0' |
|
|
43 |
properties = torch.cuda.get_device_properties(device) # device properties |
|
|
44 |
t = properties.total_memory / gb # GiB total |
|
|
45 |
r = torch.cuda.memory_reserved(device) / gb # GiB reserved |
|
|
46 |
a = torch.cuda.memory_allocated(device) / gb # GiB allocated |
|
|
47 |
f = t - (r + a) # GiB free |
|
|
48 |
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free') |
|
|
49 |
|
|
|
50 |
# Profile batch sizes |
|
|
51 |
batch_sizes = [1, 2, 4, 8, 16] |
|
|
52 |
try: |
|
|
53 |
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes] |
|
|
54 |
results = profile(img, model, n=3, device=device) |
|
|
55 |
except Exception as e: |
|
|
56 |
LOGGER.warning(f'{prefix}{e}') |
|
|
57 |
|
|
|
58 |
# Fit a solution |
|
|
59 |
y = [x[2] for x in results if x] # memory [2] |
|
|
60 |
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit |
|
|
61 |
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) |
|
|
62 |
if None in results: # some sizes failed |
|
|
63 |
i = results.index(None) # first fail index |
|
|
64 |
if b >= batch_sizes[i]: # y intercept above failure point |
|
|
65 |
b = batch_sizes[max(i - 1, 0)] # select prior safe point |
|
|
66 |
if b < 1 or b > 1024: # b outside of safe range |
|
|
67 |
b = batch_size |
|
|
68 |
LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.') |
|
|
69 |
|
|
|
70 |
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted |
|
|
71 |
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅') |
|
|
72 |
return b |