Diff of /utils/autoanchor.py [000000] .. [190ca4]

Switch to unified view

a b/utils/autoanchor.py
1
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
"""
3
AutoAnchor utils
4
"""
5
6
import random
7
8
import numpy as np
9
import torch
10
import yaml
11
from tqdm import tqdm
12
13
from utils import TryExcept
14
from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
15
16
PREFIX = colorstr('AutoAnchor: ')
17
18
19
def check_anchor_order(m):
20
    # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
21
    a = m.anchors.prod(-1).mean(-1).view(-1)  # mean anchor area per output layer
22
    da = a[-1] - a[0]  # delta a
23
    ds = m.stride[-1] - m.stride[0]  # delta s
24
    if da and (da.sign() != ds.sign()):  # same order
25
        LOGGER.info(f'{PREFIX}Reversing anchor order')
26
        m.anchors[:] = m.anchors.flip(0)
27
28
29
@TryExcept(f'{PREFIX}ERROR')
30
def check_anchors(dataset, model, thr=4.0, imgsz=640):
31
    # Check anchor fit to data, recompute if necessary
32
    m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()
33
    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
34
    scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1))  # augment scale
35
    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float()  # wh
36
37
    def metric(k):  # compute metric
38
        r = wh[:, None] / k[None]
39
        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
40
        best = x.max(1)[0]  # best_x
41
        aat = (x > 1 / thr).float().sum(1).mean()  # anchors above threshold
42
        bpr = (best > 1 / thr).float().mean()  # best possible recall
43
        return bpr, aat
44
45
    stride = m.stride.to(m.anchors.device).view(-1, 1, 1)  # model strides
46
    anchors = m.anchors.clone() * stride  # current anchors
47
    bpr, aat = metric(anchors.cpu().view(-1, 2))
48
    s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
49
    if bpr > 0.98:  # threshold to recompute
50
        LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
51
    else:
52
        LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
53
        na = m.anchors.numel() // 2  # number of anchors
54
        anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
55
        new_bpr = metric(anchors)[0]
56
        if new_bpr > bpr:  # replace anchors
57
            anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
58
            m.anchors[:] = anchors.clone().view_as(m.anchors)
59
            check_anchor_order(m)  # must be in pixel-space (not grid-space)
60
            m.anchors /= stride
61
            s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
62
        else:
63
            s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
64
        LOGGER.info(s)
65
66
67
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
68
    """ Creates kmeans-evolved anchors from training dataset
69
70
        Arguments:
71
            dataset: path to data.yaml, or a loaded dataset
72
            n: number of anchors
73
            img_size: image size used for training
74
            thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
75
            gen: generations to evolve anchors using genetic algorithm
76
            verbose: print all results
77
78
        Return:
79
            k: kmeans evolved anchors
80
81
        Usage:
82
            from utils.autoanchor import *; _ = kmean_anchors()
83
    """
84
    from scipy.cluster.vq import kmeans
85
86
    npr = np.random
87
    thr = 1 / thr
88
89
    def metric(k, wh):  # compute metrics
90
        r = wh[:, None] / k[None]
91
        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
92
        # x = wh_iou(wh, torch.tensor(k))  # iou metric
93
        return x, x.max(1)[0]  # x, best_x
94
95
    def anchor_fitness(k):  # mutation fitness
96
        _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
97
        return (best * (best > thr).float()).mean()  # fitness
98
99
    def print_results(k, verbose=True):
100
        k = k[np.argsort(k.prod(1))]  # sort small to large
101
        x, best = metric(k, wh0)
102
        bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thr
103
        s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
104
            f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
105
            f'past_thr={x[x > thr].mean():.3f}-mean: '
106
        for x in k:
107
            s += '%i,%i, ' % (round(x[0]), round(x[1]))
108
        if verbose:
109
            LOGGER.info(s[:-2])
110
        return k
111
112
    if isinstance(dataset, str):  # *.yaml file
113
        with open(dataset, errors='ignore') as f:
114
            data_dict = yaml.safe_load(f)  # model dict
115
        from utils.dataloaders import LoadImagesAndLabels
116
        dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
117
118
    # Get label wh
119
    shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
120
    wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])  # wh
121
122
    # Filter
123
    i = (wh0 < 3.0).any(1).sum()
124
    if i:
125
        LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size')
126
    wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32)  # filter > 2 pixels
127
    # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1)  # multiply by random scale 0-1
128
129
    # Kmeans init
130
    try:
131
        LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
132
        assert n <= len(wh)  # apply overdetermined constraint
133
        s = wh.std(0)  # sigmas for whitening
134
        k = kmeans(wh / s, n, iter=30)[0] * s  # points
135
        assert n == len(k)  # kmeans may return fewer points than requested if wh is insufficient or too similar
136
    except Exception:
137
        LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init')
138
        k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size  # random init
139
    wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
140
    k = print_results(k, verbose=False)
141
142
    # Plot
143
    # k, d = [None] * 20, [None] * 20
144
    # for i in tqdm(range(1, 21)):
145
    #     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance
146
    # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
147
    # ax = ax.ravel()
148
    # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
149
    # fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh
150
    # ax[0].hist(wh[wh[:, 0]<100, 0],400)
151
    # ax[1].hist(wh[wh[:, 1]<100, 1],400)
152
    # fig.savefig('wh.png', dpi=200)
153
154
    # Evolve
155
    f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigma
156
    pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT)  # progress bar
157
    for _ in pbar:
158
        v = np.ones(sh)
159
        while (v == 1).all():  # mutate until a change occurs (prevent duplicates)
160
            v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
161
        kg = (k.copy() * v).clip(min=2.0)
162
        fg = anchor_fitness(kg)
163
        if fg > f:
164
            f, k = fg, kg.copy()
165
            pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
166
            if verbose:
167
                print_results(k, verbose)
168
169
    return print_results(k).astype(np.float32)