|
a |
|
b/train.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Train a YOLOv5 model on a custom dataset. |
|
|
4 |
Models and datasets download automatically from the latest YOLOv5 release. |
|
|
5 |
|
|
|
6 |
Usage - Single-GPU training: |
|
|
7 |
$ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended) |
|
|
8 |
$ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch |
|
|
9 |
|
|
|
10 |
Usage - Multi-GPU DDP training: |
|
|
11 |
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3 |
|
|
12 |
|
|
|
13 |
Models: https://github.com/ultralytics/yolov5/tree/master/models |
|
|
14 |
Datasets: https://github.com/ultralytics/yolov5/tree/master/data |
|
|
15 |
Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data |
|
|
16 |
""" |
|
|
17 |
|
|
|
18 |
import argparse |
|
|
19 |
import math |
|
|
20 |
import os |
|
|
21 |
import random |
|
|
22 |
import subprocess |
|
|
23 |
import sys |
|
|
24 |
import time |
|
|
25 |
from copy import deepcopy |
|
|
26 |
from datetime import datetime, timedelta |
|
|
27 |
from pathlib import Path |
|
|
28 |
import torch.nn.functional as F |
|
|
29 |
from utils.general import xywh2xyxy,get_fixed_xyxy |
|
|
30 |
#from utils import custom_classifierCustomClassifier, train_and_evaluate, evaluate_classifier |
|
|
31 |
|
|
|
32 |
|
|
|
33 |
try: |
|
|
34 |
import comet_ml # must be imported before torch (if installed) |
|
|
35 |
except ImportError: |
|
|
36 |
comet_ml = None |
|
|
37 |
|
|
|
38 |
import numpy as np |
|
|
39 |
import torch |
|
|
40 |
import torch.distributed as dist |
|
|
41 |
import torch.nn as nn |
|
|
42 |
import yaml |
|
|
43 |
from torch.optim import lr_scheduler |
|
|
44 |
from tqdm import tqdm |
|
|
45 |
from torchvision.ops import roi_align |
|
|
46 |
from utils.general import get_object_level_feature_maps |
|
|
47 |
|
|
|
48 |
FILE = Path(__file__).resolve() |
|
|
49 |
ROOT = FILE.parents[0] # YOLOv5 root directory |
|
|
50 |
if str(ROOT) not in sys.path: |
|
|
51 |
sys.path.append(str(ROOT)) # add ROOT to PATH |
|
|
52 |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative |
|
|
53 |
|
|
|
54 |
import val as validate # for end-of-epoch mAP |
|
|
55 |
from models.experimental import attempt_load |
|
|
56 |
from models.yolo import Model |
|
|
57 |
from utils.autoanchor import check_anchors |
|
|
58 |
from utils.autobatch import check_train_batch_size |
|
|
59 |
from utils.callbacks import Callbacks |
|
|
60 |
from utils.dataloaders import create_dataloader |
|
|
61 |
from utils.downloads import attempt_download, is_url |
|
|
62 |
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info, |
|
|
63 |
check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr, |
|
|
64 |
get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights, |
|
|
65 |
labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer, |
|
|
66 |
yaml_save,plot_multi_channel_feature_map_with_boxes,xywh_to_xyxy) |
|
|
67 |
from utils.loggers import LOGGERS, Loggers |
|
|
68 |
from utils.loggers.comet.comet_utils import check_comet_resume |
|
|
69 |
from utils.loss import ComputeLoss |
|
|
70 |
from utils.metrics import fitness |
|
|
71 |
from utils.plots import plot_evolve |
|
|
72 |
from utils.custom_classifier import CustomClassifier, train_model_once |
|
|
73 |
from utils.my_model import MyCNN,cell_training |
|
|
74 |
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer, |
|
|
75 |
smart_resume, torch_distributed_zero_first) |
|
|
76 |
|
|
|
77 |
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html |
|
|
78 |
RANK = int(os.getenv('RANK', -1)) |
|
|
79 |
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) |
|
|
80 |
GIT_INFO = check_git_info() |
|
|
81 |
|
|
|
82 |
|
|
|
83 |
|
|
|
84 |
def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary |
|
|
85 |
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ |
|
|
86 |
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ |
|
|
87 |
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze |
|
|
88 |
callbacks.run('on_pretrain_routine_start') |
|
|
89 |
|
|
|
90 |
|
|
|
91 |
cell_attribute_model = MyCNN(num_classes=12, dropout_prob=0.5, in_channels=480).to(device) |
|
|
92 |
# cell_attribute_model.load_state_dict(torch.load('Attribute_model/best_weights_0.8056662588308221_51.pth')) |
|
|
93 |
#cell_attribute_model.train() |
|
|
94 |
|
|
|
95 |
#step_size = 5 |
|
|
96 |
# gamma = 0.01 |
|
|
97 |
# scheduler_cell_model = lr_scheduler.StepLR(optimizer_cell_model, step_size=step_size, gamma=gamma) |
|
|
98 |
|
|
|
99 |
# Directories |
|
|
100 |
w = save_dir / 'weights' # weights dir |
|
|
101 |
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir |
|
|
102 |
last, best = w / 'last.pt', w / 'best.pt' |
|
|
103 |
|
|
|
104 |
# Hyperparameters |
|
|
105 |
if isinstance(hyp, str): |
|
|
106 |
with open(hyp, errors='ignore') as f: |
|
|
107 |
hyp = yaml.safe_load(f) # load hyps dict |
|
|
108 |
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) |
|
|
109 |
opt.hyp = hyp.copy() # for saving hyps to checkpoints |
|
|
110 |
|
|
|
111 |
# Save run settings |
|
|
112 |
if not evolve: |
|
|
113 |
yaml_save(save_dir / 'hyp.yaml', hyp) |
|
|
114 |
yaml_save(save_dir / 'opt.yaml', vars(opt)) |
|
|
115 |
|
|
|
116 |
# Loggers |
|
|
117 |
data_dict = None |
|
|
118 |
if RANK in {-1, 0}: |
|
|
119 |
include_loggers = list(LOGGERS) |
|
|
120 |
if getattr(opt, 'ndjson_console', False): |
|
|
121 |
include_loggers.append('ndjson_console') |
|
|
122 |
if getattr(opt, 'ndjson_file', False): |
|
|
123 |
include_loggers.append('ndjson_file') |
|
|
124 |
|
|
|
125 |
loggers = Loggers( |
|
|
126 |
save_dir=save_dir, |
|
|
127 |
weights=weights, |
|
|
128 |
opt=opt, |
|
|
129 |
hyp=hyp, |
|
|
130 |
logger=LOGGER, |
|
|
131 |
include=tuple(include_loggers), |
|
|
132 |
) |
|
|
133 |
|
|
|
134 |
# Register actions |
|
|
135 |
for k in methods(loggers): |
|
|
136 |
callbacks.register_action(k, callback=getattr(loggers, k)) |
|
|
137 |
|
|
|
138 |
# Process custom dataset artifact link |
|
|
139 |
data_dict = loggers.remote_dataset |
|
|
140 |
if resume: # If resuming runs from remote artifact |
|
|
141 |
weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size |
|
|
142 |
|
|
|
143 |
# Config |
|
|
144 |
plots = not evolve and not opt.noplots # create plots |
|
|
145 |
cuda = device.type != 'cpu' |
|
|
146 |
init_seeds(opt.seed + 1 + RANK, deterministic=True) |
|
|
147 |
with torch_distributed_zero_first(LOCAL_RANK): |
|
|
148 |
data_dict = data_dict or check_dataset(data) # check if None |
|
|
149 |
train_path, val_path = data_dict['train'], data_dict['val'] |
|
|
150 |
nc = 1 if single_cls else int(data_dict['nc']) # number of classes |
|
|
151 |
names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names |
|
|
152 |
is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset |
|
|
153 |
|
|
|
154 |
# Model |
|
|
155 |
check_suffix(weights, '.pt') # check weights |
|
|
156 |
pretrained = weights.endswith('.pt') |
|
|
157 |
if pretrained: |
|
|
158 |
with torch_distributed_zero_first(LOCAL_RANK): |
|
|
159 |
weights = attempt_download(weights) # download if not found locally |
|
|
160 |
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak |
|
|
161 |
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create |
|
|
162 |
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys |
|
|
163 |
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 |
|
|
164 |
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect |
|
|
165 |
model.load_state_dict(csd, strict=False) # load |
|
|
166 |
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report |
|
|
167 |
else: |
|
|
168 |
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create |
|
|
169 |
amp = check_amp(model) # check AMP |
|
|
170 |
|
|
|
171 |
# Freeze |
|
|
172 |
freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze |
|
|
173 |
for k, v in model.named_parameters(): |
|
|
174 |
v.requires_grad = True # train all layers |
|
|
175 |
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results) |
|
|
176 |
if any(x in k for x in freeze): |
|
|
177 |
LOGGER.info(f'freezing {k}') |
|
|
178 |
v.requires_grad = False |
|
|
179 |
|
|
|
180 |
# Image size |
|
|
181 |
gs = max(int(model.stride.max()), 32) # grid size (max stride) |
|
|
182 |
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple |
|
|
183 |
|
|
|
184 |
# Batch size |
|
|
185 |
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size |
|
|
186 |
batch_size = check_train_batch_size(model, imgsz, amp) |
|
|
187 |
loggers.on_params_update({'batch_size': batch_size}) |
|
|
188 |
|
|
|
189 |
# Optimizer |
|
|
190 |
nbs = 64 # nominal batch size |
|
|
191 |
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing |
|
|
192 |
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay |
|
|
193 |
optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay']) |
|
|
194 |
#optimizer_cell_model = torch.optim.Adam(cell_attribute_model.parameters(), opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay']) |
|
|
195 |
optimizer_cell_model = torch.optim.SGD(cell_attribute_model.parameters(), lr=hyp['lr0'],momentum= hyp['momentum'], weight_decay=hyp['weight_decay']) |
|
|
196 |
|
|
|
197 |
# Scheduler |
|
|
198 |
if opt.cos_lr: |
|
|
199 |
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] |
|
|
200 |
else: |
|
|
201 |
lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear |
|
|
202 |
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) |
|
|
203 |
scheduler_cell_model = lr_scheduler.LambdaLR(optimizer_cell_model, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) |
|
|
204 |
|
|
|
205 |
|
|
|
206 |
|
|
|
207 |
# EMA |
|
|
208 |
ema = ModelEMA(model) if RANK in {-1, 0} else None |
|
|
209 |
|
|
|
210 |
# Resume |
|
|
211 |
best_fitness, start_epoch = 0.0, 0 |
|
|
212 |
if pretrained: |
|
|
213 |
if resume: |
|
|
214 |
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) |
|
|
215 |
del ckpt, csd |
|
|
216 |
|
|
|
217 |
# DP mode |
|
|
218 |
if cuda and RANK == -1 and torch.cuda.device_count() > 1: |
|
|
219 |
LOGGER.warning( |
|
|
220 |
'WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' |
|
|
221 |
'See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started.' |
|
|
222 |
) |
|
|
223 |
model = torch.nn.DataParallel(model) |
|
|
224 |
|
|
|
225 |
# SyncBatchNorm |
|
|
226 |
if opt.sync_bn and cuda and RANK != -1: |
|
|
227 |
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) |
|
|
228 |
LOGGER.info('Using SyncBatchNorm()') |
|
|
229 |
|
|
|
230 |
# Trainloader |
|
|
231 |
train_loader, dataset = create_dataloader(train_path, |
|
|
232 |
imgsz, |
|
|
233 |
batch_size // WORLD_SIZE, |
|
|
234 |
gs, |
|
|
235 |
single_cls, |
|
|
236 |
hyp=hyp, |
|
|
237 |
augment=True, |
|
|
238 |
cache=None if opt.cache == 'val' else opt.cache, |
|
|
239 |
rect=opt.rect, |
|
|
240 |
rank=LOCAL_RANK, |
|
|
241 |
workers=workers, |
|
|
242 |
image_weights=opt.image_weights, |
|
|
243 |
quad=opt.quad, |
|
|
244 |
prefix=colorstr('train: '), |
|
|
245 |
shuffle=True, |
|
|
246 |
seed=opt.seed) |
|
|
247 |
labels = np.concatenate(dataset.labels, 0) |
|
|
248 |
mlc = int(labels[:, 0].max()) # max label class |
|
|
249 |
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' |
|
|
250 |
|
|
|
251 |
# Process 0 |
|
|
252 |
if RANK in {-1, 0}: |
|
|
253 |
val_loader = create_dataloader(val_path, |
|
|
254 |
imgsz, |
|
|
255 |
batch_size // WORLD_SIZE * 2, |
|
|
256 |
gs, |
|
|
257 |
single_cls, |
|
|
258 |
hyp=hyp, |
|
|
259 |
cache=None if noval else opt.cache, |
|
|
260 |
rect=True, |
|
|
261 |
rank=-1, |
|
|
262 |
workers=workers * 2, |
|
|
263 |
pad=0.5, |
|
|
264 |
prefix=colorstr('val: '))[0] |
|
|
265 |
|
|
|
266 |
if not resume: |
|
|
267 |
if not opt.noautoanchor: |
|
|
268 |
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor |
|
|
269 |
model.half().float() # pre-reduce anchor precision |
|
|
270 |
|
|
|
271 |
callbacks.run('on_pretrain_routine_end', labels, names) |
|
|
272 |
|
|
|
273 |
# DDP mode |
|
|
274 |
if cuda and RANK != -1: |
|
|
275 |
model = smart_DDP(model) |
|
|
276 |
|
|
|
277 |
# Model attributes |
|
|
278 |
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) |
|
|
279 |
hyp['box'] *= 3 / nl # scale to layers |
|
|
280 |
hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers |
|
|
281 |
hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers |
|
|
282 |
hyp['label_smoothing'] = opt.label_smoothing |
|
|
283 |
model.nc = nc # attach number of classes to model |
|
|
284 |
model.hyp = hyp # attach hyperparameters to model |
|
|
285 |
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights |
|
|
286 |
model.names = names |
|
|
287 |
|
|
|
288 |
# Start training |
|
|
289 |
t0 = time.time() |
|
|
290 |
nb = len(train_loader) # number of batches |
|
|
291 |
nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) |
|
|
292 |
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training |
|
|
293 |
last_opt_step = -1 |
|
|
294 |
maps = np.zeros(nc) # mAP per class |
|
|
295 |
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) |
|
|
296 |
scheduler.last_epoch = start_epoch - 1 # do not move |
|
|
297 |
scaler = torch.cuda.amp.GradScaler(enabled=amp) |
|
|
298 |
stopper, stop = EarlyStopping(patience=opt.patience), False |
|
|
299 |
compute_loss = ComputeLoss(model) # init loss class |
|
|
300 |
callbacks.run('on_train_start') |
|
|
301 |
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' |
|
|
302 |
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' |
|
|
303 |
f"Logging results to {colorstr('bold', save_dir)}\n" |
|
|
304 |
f'Starting training for {epochs} epochs...') |
|
|
305 |
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ |
|
|
306 |
callbacks.run('on_train_epoch_start') |
|
|
307 |
model.train() |
|
|
308 |
cell_attribute_model.train() |
|
|
309 |
|
|
|
310 |
# Update image weights (optional, single-GPU only) |
|
|
311 |
if opt.image_weights: |
|
|
312 |
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights |
|
|
313 |
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights |
|
|
314 |
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx |
|
|
315 |
|
|
|
316 |
# Update mosaic border (optional) |
|
|
317 |
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) |
|
|
318 |
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders |
|
|
319 |
|
|
|
320 |
mloss = torch.zeros(3, device=device) # mean losses |
|
|
321 |
if RANK != -1: |
|
|
322 |
train_loader.sampler.set_epoch(epoch) |
|
|
323 |
pbar = enumerate(train_loader) |
|
|
324 |
LOGGER.info(('\n' + '%11s' * 8) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'attr_loss', 'Instances', 'Size')) |
|
|
325 |
if RANK in {-1, 0}: |
|
|
326 |
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar |
|
|
327 |
optimizer.zero_grad() |
|
|
328 |
avg_attribute_loss= 0 |
|
|
329 |
length_of_data=0 |
|
|
330 |
for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- |
|
|
331 |
|
|
|
332 |
callbacks.run('on_train_batch_start') |
|
|
333 |
ni = i + nb * epoch # number integrated batches (since train start) |
|
|
334 |
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 |
|
|
335 |
|
|
|
336 |
# Warmup |
|
|
337 |
if ni <= nw: |
|
|
338 |
xi = [0, nw] # x interp |
|
|
339 |
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) |
|
|
340 |
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) |
|
|
341 |
for j, x in enumerate(optimizer.param_groups): |
|
|
342 |
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 |
|
|
343 |
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)]) |
|
|
344 |
if 'momentum' in x: |
|
|
345 |
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) |
|
|
346 |
|
|
|
347 |
# Multi-scale |
|
|
348 |
if opt.multi_scale: |
|
|
349 |
sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size |
|
|
350 |
sf = sz / max(imgs.shape[2:]) # scale factor |
|
|
351 |
if sf != 1: |
|
|
352 |
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) |
|
|
353 |
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) |
|
|
354 |
|
|
|
355 |
# Forward |
|
|
356 |
with torch.cuda.amp.autocast(amp): |
|
|
357 |
pred,int_feat = model(imgs) # forward |
|
|
358 |
|
|
|
359 |
#batch_obj = 0 |
|
|
360 |
Num_targets = len(targets) |
|
|
361 |
pooled_feature_map_batch = [] |
|
|
362 |
optimizer_cell_model.zero_grad() |
|
|
363 |
|
|
|
364 |
for i in range(Num_targets): |
|
|
365 |
img_num = int(targets[i,0].item()) |
|
|
366 |
|
|
|
367 |
p2_feature_map =int_feat[0][img_num] # imgs[img_num] |
|
|
368 |
p3_feature_map = int_feat[1][img_num] |
|
|
369 |
|
|
|
370 |
x_center = targets[i, 2] |
|
|
371 |
y_center = targets[i, 3] |
|
|
372 |
width = targets[i, 4] |
|
|
373 |
height = targets[i, 5] |
|
|
374 |
bb = [round(x_center.item(),4), round(y_center.item(),4), round(width.item(),4), round(height.item(),4)] |
|
|
375 |
p2_feature_shape_tensor = torch.tensor([int_feat[0][img_num].shape[1], int_feat[0][img_num].shape[2],int_feat[0][img_num].shape[1],int_feat[0][img_num].shape[2]]) # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device) |
|
|
376 |
p3_feature_shape_tensor = torch.tensor([int_feat[1][img_num].shape[1], int_feat[1][img_num].shape[2],int_feat[1][img_num].shape[1],int_feat[1][img_num].shape[2]]) # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device) |
|
|
377 |
# reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device) |
|
|
378 |
|
|
|
379 |
p2_normalized_xyxy = xywh_to_xyxy(bb)*p2_feature_shape_tensor #imgs.shape[2] |
|
|
380 |
p3_normalized_xyxy = xywh_to_xyxy(bb)*p3_feature_shape_tensor #imgs.shape[2] |
|
|
381 |
|
|
|
382 |
|
|
|
383 |
p2_x_min, p2_y_min, p2_x_max, p2_y_max = get_fixed_xyxy(p2_normalized_xyxy,p2_feature_map) |
|
|
384 |
p3_x_min, p3_y_min, p3_x_max, p3_y_max = get_fixed_xyxy(p3_normalized_xyxy,p3_feature_map) |
|
|
385 |
|
|
|
386 |
batch_index = torch.tensor([0], dtype=torch.float32).to(device) |
|
|
387 |
|
|
|
388 |
p2_roi = torch.tensor([p2_x_min, p2_y_min, p2_x_max, p2_y_max], device=device).float() |
|
|
389 |
p3_roi = torch.tensor([p3_x_min, p3_y_min, p3_x_max, p3_y_max], device=device).float() |
|
|
390 |
|
|
|
391 |
|
|
|
392 |
# Concatenate the batch index to the bounding box coordinates |
|
|
393 |
p2_roi_with_batch_index = torch.cat([batch_index, p2_roi]) |
|
|
394 |
p3_roi_with_batch_index = torch.cat([batch_index, p3_roi]) |
|
|
395 |
|
|
|
396 |
# relevant_feature_map = p3_feature_map.unsqueeze(0)[:, :, y_min:y_max, x_min:x_max] |
|
|
397 |
p2_resized_object = roi_align(p2_feature_map.unsqueeze(0), p2_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30)) |
|
|
398 |
p3_resized_object = roi_align(p3_feature_map.unsqueeze(0), p3_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30)) |
|
|
399 |
concat_box = torch.cat([p2_resized_object,p3_resized_object],dim=1) |
|
|
400 |
|
|
|
401 |
|
|
|
402 |
pooled_feature_map_batch.append(concat_box) |
|
|
403 |
cell_attribute_loss= cell_training(cell_attribute_model,pooled_feature_map_batch, targets[:,6:13].to(device)) |
|
|
404 |
# del concatenated_features |
|
|
405 |
cell_attribute_loss.backward(retain_graph=True) |
|
|
406 |
optimizer_cell_model.step() |
|
|
407 |
|
|
|
408 |
avg_attribute_loss+=cell_attribute_loss.item() |
|
|
409 |
length_of_data+=1 |
|
|
410 |
|
|
|
411 |
|
|
|
412 |
loss, loss_items = compute_loss(pred, targets[:,0:6].to(device)) # loss scaled by batch_size I changed here |
|
|
413 |
if RANK != -1: |
|
|
414 |
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode |
|
|
415 |
if opt.quad: |
|
|
416 |
loss *= 4. |
|
|
417 |
|
|
|
418 |
# Backward |
|
|
419 |
scaler.scale(loss).backward() |
|
|
420 |
|
|
|
421 |
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html |
|
|
422 |
if ni - last_opt_step >= accumulate: |
|
|
423 |
scaler.unscale_(optimizer) # unscale gradients |
|
|
424 |
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients |
|
|
425 |
scaler.step(optimizer) # optimizer.step |
|
|
426 |
scaler.update() |
|
|
427 |
optimizer.zero_grad() |
|
|
428 |
if ema: |
|
|
429 |
ema.update(model) |
|
|
430 |
last_opt_step = ni |
|
|
431 |
|
|
|
432 |
# Log |
|
|
433 |
if RANK in {-1, 0}: |
|
|
434 |
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses |
|
|
435 |
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) |
|
|
436 |
avg_attr_loss = avg_attribute_loss / length_of_data # Calculate the average attribute loss |
|
|
437 |
|
|
|
438 |
pbar.set_description(('%11s' * 2 + '%11.4g' * 6) % |
|
|
439 |
(f'{epoch}/{epochs - 1}', mem, *mloss,avg_attr_loss, targets.shape[0], imgs.shape[-1])) |
|
|
440 |
callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss)) |
|
|
441 |
if callbacks.stop_training: |
|
|
442 |
return |
|
|
443 |
# end batch ------------------------------------------------------------------------------------------------ |
|
|
444 |
# print("Attribute_average_loss= ",avg_attribute_loss/length_of_data) |
|
|
445 |
# Scheduler |
|
|
446 |
lr = [x['lr'] for x in optimizer.param_groups] # for loggers |
|
|
447 |
scheduler.step() |
|
|
448 |
scheduler_cell_model.step() |
|
|
449 |
|
|
|
450 |
|
|
|
451 |
if RANK in {-1, 0}: |
|
|
452 |
# if epoch > 50: |
|
|
453 |
# mAP |
|
|
454 |
callbacks.run('on_train_epoch_end', epoch=epoch) |
|
|
455 |
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) |
|
|
456 |
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop |
|
|
457 |
if not noval or final_epoch: # Calculate mAP |
|
|
458 |
results, maps, _ = validate.run(data_dict,cell_attribute_model, |
|
|
459 |
batch_size=1,# batch_size // WORLD_SIZE * 2, |
|
|
460 |
imgsz=imgsz, |
|
|
461 |
half=amp, |
|
|
462 |
model=ema.ema, |
|
|
463 |
single_cls=single_cls, |
|
|
464 |
dataloader=val_loader, |
|
|
465 |
save_dir=save_dir, |
|
|
466 |
plots=False, |
|
|
467 |
callbacks=callbacks, |
|
|
468 |
compute_loss=compute_loss |
|
|
469 |
) |
|
|
470 |
|
|
|
471 |
# Update best mAP |
|
|
472 |
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] |
|
|
473 |
stop = stopper(epoch=epoch, fitness=fi) # early stop check |
|
|
474 |
if fi > best_fitness: |
|
|
475 |
best_fitness = fi |
|
|
476 |
log_vals = list(mloss) + list(results) + lr |
|
|
477 |
callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) |
|
|
478 |
|
|
|
479 |
# Save model |
|
|
480 |
if (not nosave) or (final_epoch and not evolve): # if save |
|
|
481 |
ckpt = { |
|
|
482 |
'epoch': epoch, |
|
|
483 |
'best_fitness': best_fitness, |
|
|
484 |
'model': deepcopy(de_parallel(model)).half(), |
|
|
485 |
'ema': deepcopy(ema.ema).half(), |
|
|
486 |
'updates': ema.updates, |
|
|
487 |
'optimizer': optimizer.state_dict(), |
|
|
488 |
'opt': vars(opt), |
|
|
489 |
'git': GIT_INFO, # {remote, branch, commit} if a git repo |
|
|
490 |
'date': datetime.now().isoformat()} |
|
|
491 |
|
|
|
492 |
# Save last, best and delete |
|
|
493 |
torch.save(ckpt, last) |
|
|
494 |
if best_fitness == fi: |
|
|
495 |
torch.save(ckpt, best) |
|
|
496 |
if opt.save_period > 0 and epoch % opt.save_period == 0: |
|
|
497 |
torch.save(ckpt, w / f'epoch{epoch}.pt') |
|
|
498 |
del ckpt |
|
|
499 |
callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) |
|
|
500 |
|
|
|
501 |
# EarlyStopping |
|
|
502 |
if RANK != -1: # if DDP training |
|
|
503 |
broadcast_list = [stop if RANK == 0 else None] |
|
|
504 |
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks |
|
|
505 |
if RANK != 0: |
|
|
506 |
stop = broadcast_list[0] |
|
|
507 |
if stop: |
|
|
508 |
break # must break all DDP ranks |
|
|
509 |
|
|
|
510 |
# end epoch ---------------------------------------------------------------------------------------------------- |
|
|
511 |
# end training ----------------------------------------------------------------------------------------------------- |
|
|
512 |
if RANK in {-1, 0}: |
|
|
513 |
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') |
|
|
514 |
for f in last, best: |
|
|
515 |
if f.exists(): |
|
|
516 |
strip_optimizer(f) # strip optimizers |
|
|
517 |
if f is best: |
|
|
518 |
LOGGER.info(f'\nValidating {f}...') |
|
|
519 |
results, _, _ = validate.run( |
|
|
520 |
data_dict, cell_attribute_model, |
|
|
521 |
batch_size=batch_size // WORLD_SIZE * 2, |
|
|
522 |
imgsz=imgsz, |
|
|
523 |
model=attempt_load(f, device).half(), |
|
|
524 |
iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65 |
|
|
525 |
single_cls=single_cls, |
|
|
526 |
dataloader=val_loader, |
|
|
527 |
save_dir=save_dir, |
|
|
528 |
save_json=is_coco, |
|
|
529 |
verbose=True, |
|
|
530 |
plots=plots, |
|
|
531 |
callbacks=callbacks, |
|
|
532 |
compute_loss=compute_loss) # val best model with plots |
|
|
533 |
if is_coco: |
|
|
534 |
callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) |
|
|
535 |
|
|
|
536 |
callbacks.run('on_train_end', last, best, epoch, results) |
|
|
537 |
|
|
|
538 |
torch.cuda.empty_cache() |
|
|
539 |
return results |
|
|
540 |
|
|
|
541 |
|
|
|
542 |
def parse_opt(known=False): |
|
|
543 |
parser = argparse.ArgumentParser() |
|
|
544 |
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path') |
|
|
545 |
parser.add_argument('--cfg', type=str, default='', help='model.yaml path') |
|
|
546 |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') |
|
|
547 |
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') |
|
|
548 |
parser.add_argument('--epochs', type=int, default=100, help='total training epochs') |
|
|
549 |
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') |
|
|
550 |
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') |
|
|
551 |
parser.add_argument('--rect', action='store_true', help='rectangular training') |
|
|
552 |
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') |
|
|
553 |
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') |
|
|
554 |
parser.add_argument('--noval', action='store_true', help='only validate final epoch') |
|
|
555 |
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') |
|
|
556 |
parser.add_argument('--noplots', action='store_true', help='save no plot files') |
|
|
557 |
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') |
|
|
558 |
parser.add_argument('--evolve_population', |
|
|
559 |
type=str, |
|
|
560 |
default=ROOT / 'data/hyps', |
|
|
561 |
help='location for loading population') |
|
|
562 |
parser.add_argument('--resume_evolve', type=str, default=None, help='resume evolve from last generation') |
|
|
563 |
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') |
|
|
564 |
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk') |
|
|
565 |
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') |
|
|
566 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
567 |
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') |
|
|
568 |
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') |
|
|
569 |
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') |
|
|
570 |
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') |
|
|
571 |
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') |
|
|
572 |
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') |
|
|
573 |
parser.add_argument('--name', default='exp', help='save to project/name') |
|
|
574 |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
|
575 |
parser.add_argument('--quad', action='store_true', help='quad dataloader') |
|
|
576 |
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') |
|
|
577 |
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') |
|
|
578 |
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') |
|
|
579 |
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') |
|
|
580 |
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') |
|
|
581 |
parser.add_argument('--seed', type=int, default=0, help='Global training seed') |
|
|
582 |
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') |
|
|
583 |
|
|
|
584 |
# Logger arguments |
|
|
585 |
parser.add_argument('--entity', default=None, help='Entity') |
|
|
586 |
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option') |
|
|
587 |
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval') |
|
|
588 |
parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use') |
|
|
589 |
|
|
|
590 |
# NDJSON logging |
|
|
591 |
parser.add_argument('--ndjson-console', action='store_true', help='Log ndjson to console') |
|
|
592 |
parser.add_argument('--ndjson-file', action='store_true', help='Log ndjson to file') |
|
|
593 |
|
|
|
594 |
return parser.parse_known_args()[0] if known else parser.parse_args() |
|
|
595 |
|
|
|
596 |
|
|
|
597 |
def main(opt, callbacks=Callbacks()): |
|
|
598 |
# Checks |
|
|
599 |
if RANK in {-1, 0}: |
|
|
600 |
print_args(vars(opt)) |
|
|
601 |
check_git_status() |
|
|
602 |
check_requirements(ROOT / 'requirements.txt') |
|
|
603 |
|
|
|
604 |
# Resume (from specified or most recent last.pt) |
|
|
605 |
if opt.resume and not check_comet_resume(opt) and not opt.evolve: |
|
|
606 |
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) |
|
|
607 |
opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml |
|
|
608 |
opt_data = opt.data # original dataset |
|
|
609 |
if opt_yaml.is_file(): |
|
|
610 |
with open(opt_yaml, errors='ignore') as f: |
|
|
611 |
d = yaml.safe_load(f) |
|
|
612 |
else: |
|
|
613 |
d = torch.load(last, map_location='cpu')['opt'] |
|
|
614 |
opt = argparse.Namespace(**d) # replace |
|
|
615 |
opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate |
|
|
616 |
if is_url(opt_data): |
|
|
617 |
opt.data = check_file(opt_data) # avoid HUB resume auth timeout |
|
|
618 |
else: |
|
|
619 |
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ |
|
|
620 |
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks |
|
|
621 |
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' |
|
|
622 |
if opt.evolve: |
|
|
623 |
if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve |
|
|
624 |
opt.project = str(ROOT / 'runs/evolve') |
|
|
625 |
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume |
|
|
626 |
if opt.name == 'cfg': |
|
|
627 |
opt.name = Path(opt.cfg).stem # use model.yaml as name |
|
|
628 |
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) |
|
|
629 |
|
|
|
630 |
# DDP mode |
|
|
631 |
device = select_device(opt.device, batch_size=opt.batch_size) |
|
|
632 |
if LOCAL_RANK != -1: |
|
|
633 |
msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' |
|
|
634 |
assert not opt.image_weights, f'--image-weights {msg}' |
|
|
635 |
assert not opt.evolve, f'--evolve {msg}' |
|
|
636 |
assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size' |
|
|
637 |
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' |
|
|
638 |
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' |
|
|
639 |
torch.cuda.set_device(LOCAL_RANK) |
|
|
640 |
device = torch.device('cuda', LOCAL_RANK) |
|
|
641 |
dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo', |
|
|
642 |
timeout=timedelta(seconds=10800)) |
|
|
643 |
|
|
|
644 |
# Train |
|
|
645 |
if not opt.evolve: |
|
|
646 |
train(opt.hyp, opt, device, callbacks) |
|
|
647 |
|
|
|
648 |
# Evolve hyperparameters (optional) |
|
|
649 |
else: |
|
|
650 |
# Hyperparameter evolution metadata (including this hyperparameter True-False, lower_limit, upper_limit) |
|
|
651 |
meta = { |
|
|
652 |
'lr0': (False, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) |
|
|
653 |
'lrf': (False, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) |
|
|
654 |
'momentum': (False, 0.6, 0.98), # SGD momentum/Adam beta1 |
|
|
655 |
'weight_decay': (False, 0.0, 0.001), # optimizer weight decay |
|
|
656 |
'warmup_epochs': (False, 0.0, 5.0), # warmup epochs (fractions ok) |
|
|
657 |
'warmup_momentum': (False, 0.0, 0.95), # warmup initial momentum |
|
|
658 |
'warmup_bias_lr': (False, 0.0, 0.2), # warmup initial bias lr |
|
|
659 |
'box': (False, 0.02, 0.2), # box loss gain |
|
|
660 |
'cls': (False, 0.2, 4.0), # cls loss gain |
|
|
661 |
'cls_pw': (False, 0.5, 2.0), # cls BCELoss positive_weight |
|
|
662 |
'obj': (False, 0.2, 4.0), # obj loss gain (scale with pixels) |
|
|
663 |
'obj_pw': (False, 0.5, 2.0), # obj BCELoss positive_weight |
|
|
664 |
'iou_t': (False, 0.1, 0.7), # IoU training threshold |
|
|
665 |
'anchor_t': (False, 2.0, 8.0), # anchor-multiple threshold |
|
|
666 |
'anchors': (False, 2.0, 10.0), # anchors per output grid (0 to ignore) |
|
|
667 |
'fl_gamma': (False, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) |
|
|
668 |
'hsv_h': (True, 0.0, 0.1), # image HSV-Hue augmentation (fraction) |
|
|
669 |
'hsv_s': (True, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) |
|
|
670 |
'hsv_v': (True, 0.0, 0.9), # image HSV-Value augmentation (fraction) |
|
|
671 |
'degrees': (True, 0.0, 45.0), # image rotation (+/- deg) |
|
|
672 |
'translate': (True, 0.0, 0.9), # image translation (+/- fraction) |
|
|
673 |
'scale': (True, 0.0, 0.9), # image scale (+/- gain) |
|
|
674 |
'shear': (True, 0.0, 10.0), # image shear (+/- deg) |
|
|
675 |
'perspective': (True, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 |
|
|
676 |
'flipud': (True, 0.0, 1.0), # image flip up-down (probability) |
|
|
677 |
'fliplr': (True, 0.0, 1.0), # image flip left-right (probability) |
|
|
678 |
'mosaic': (True, 0.0, 1.0), # image mixup (probability) |
|
|
679 |
'mixup': (True, 0.0, 1.0), # image mixup (probability) |
|
|
680 |
'copy_paste': (True, 0.0, 1.0)} # segment copy-paste (probability) |
|
|
681 |
|
|
|
682 |
# GA configs |
|
|
683 |
pop_size = 50 |
|
|
684 |
mutation_rate_min = 0.01 |
|
|
685 |
mutation_rate_max = 0.5 |
|
|
686 |
crossover_rate_min = 0.5 |
|
|
687 |
crossover_rate_max = 1 |
|
|
688 |
min_elite_size = 2 |
|
|
689 |
max_elite_size = 5 |
|
|
690 |
tournament_size_min = 2 |
|
|
691 |
tournament_size_max = 10 |
|
|
692 |
|
|
|
693 |
with open(opt.hyp, errors='ignore') as f: |
|
|
694 |
hyp = yaml.safe_load(f) # load hyps dict |
|
|
695 |
if 'anchors' not in hyp: # anchors commented in hyp.yaml |
|
|
696 |
hyp['anchors'] = 3 |
|
|
697 |
if opt.noautoanchor: |
|
|
698 |
del hyp['anchors'], meta['anchors'] |
|
|
699 |
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch |
|
|
700 |
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices |
|
|
701 |
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' |
|
|
702 |
if opt.bucket: |
|
|
703 |
# download evolve.csv if exists |
|
|
704 |
subprocess.run([ |
|
|
705 |
'gsutil', |
|
|
706 |
'cp', |
|
|
707 |
f'gs://{opt.bucket}/evolve.csv', |
|
|
708 |
str(evolve_csv), ]) |
|
|
709 |
|
|
|
710 |
# Delete the items in meta dictionary whose first value is False |
|
|
711 |
del_ = [] |
|
|
712 |
for item in meta.keys(): |
|
|
713 |
if meta[item][0] is False: |
|
|
714 |
del_.append(item) |
|
|
715 |
hyp_GA = hyp.copy() # Make a copy of hyp dictionary |
|
|
716 |
for item in del_: |
|
|
717 |
del meta[item] # Remove the item from meta dictionary |
|
|
718 |
del hyp_GA[item] # Remove the item from hyp_GA dictionary |
|
|
719 |
|
|
|
720 |
# Set lower_limit and upper_limit arrays to hold the search space boundaries |
|
|
721 |
lower_limit = np.array([meta[k][1] for k in hyp_GA.keys()]) |
|
|
722 |
upper_limit = np.array([meta[k][2] for k in hyp_GA.keys()]) |
|
|
723 |
|
|
|
724 |
# Create gene_ranges list to hold the range of values for each gene in the population |
|
|
725 |
gene_ranges = [] |
|
|
726 |
for i in range(len(upper_limit)): |
|
|
727 |
gene_ranges.append((lower_limit[i], upper_limit[i])) |
|
|
728 |
|
|
|
729 |
# Initialize the population with initial_values or random values |
|
|
730 |
initial_values = [] |
|
|
731 |
|
|
|
732 |
# If resuming evolution from a previous checkpoint |
|
|
733 |
if opt.resume_evolve is not None: |
|
|
734 |
assert os.path.isfile(ROOT / opt.resume_evolve), 'evolve population path is wrong!' |
|
|
735 |
with open(ROOT / opt.resume_evolve, errors='ignore') as f: |
|
|
736 |
evolve_population = yaml.safe_load(f) |
|
|
737 |
for value in evolve_population.values(): |
|
|
738 |
value = np.array([value[k] for k in hyp_GA.keys()]) |
|
|
739 |
initial_values.append(list(value)) |
|
|
740 |
|
|
|
741 |
# If not resuming from a previous checkpoint, generate initial values from .yaml files in opt.evolve_population |
|
|
742 |
else: |
|
|
743 |
yaml_files = [f for f in os.listdir(opt.evolve_population) if f.endswith('.yaml')] |
|
|
744 |
for file_name in yaml_files: |
|
|
745 |
with open(os.path.join(opt.evolve_population, file_name)) as yaml_file: |
|
|
746 |
value = yaml.safe_load(yaml_file) |
|
|
747 |
value = np.array([value[k] for k in hyp_GA.keys()]) |
|
|
748 |
initial_values.append(list(value)) |
|
|
749 |
|
|
|
750 |
# Generate random values within the search space for the rest of the population |
|
|
751 |
if (initial_values is None): |
|
|
752 |
population = [generate_individual(gene_ranges, len(hyp_GA)) for i in range(pop_size)] |
|
|
753 |
else: |
|
|
754 |
if (pop_size > 1): |
|
|
755 |
population = [ |
|
|
756 |
generate_individual(gene_ranges, len(hyp_GA)) for i in range(pop_size - len(initial_values))] |
|
|
757 |
for initial_value in initial_values: |
|
|
758 |
population = [initial_value] + population |
|
|
759 |
|
|
|
760 |
# Run the genetic algorithm for a fixed number of generations |
|
|
761 |
list_keys = list(hyp_GA.keys()) |
|
|
762 |
for generation in range(opt.evolve): |
|
|
763 |
if (generation >= 1): |
|
|
764 |
save_dict = {} |
|
|
765 |
for i in range(len(population)): |
|
|
766 |
little_dict = {} |
|
|
767 |
for j in range(len(population[i])): |
|
|
768 |
little_dict[list_keys[j]] = float(population[i][j]) |
|
|
769 |
save_dict['gen' + str(generation) + 'number' + str(i)] = little_dict |
|
|
770 |
|
|
|
771 |
with open(save_dir / 'evolve_population.yaml', 'w') as outfile: |
|
|
772 |
yaml.dump(save_dict, outfile, default_flow_style=False) |
|
|
773 |
|
|
|
774 |
# Adaptive elite size |
|
|
775 |
elite_size = min_elite_size + int((max_elite_size - min_elite_size) * (generation / opt.evolve)) |
|
|
776 |
# Evaluate the fitness of each individual in the population |
|
|
777 |
fitness_scores = [] |
|
|
778 |
for individual in population: |
|
|
779 |
for key, value in zip(hyp_GA.keys(), individual): |
|
|
780 |
hyp_GA[key] = value |
|
|
781 |
hyp.update(hyp_GA) |
|
|
782 |
results = train(hyp.copy(), opt, device, callbacks) |
|
|
783 |
callbacks = Callbacks() |
|
|
784 |
# Write mutation results |
|
|
785 |
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', |
|
|
786 |
'val/box_loss', 'val/obj_loss', 'val/cls_loss') |
|
|
787 |
print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket) |
|
|
788 |
fitness_scores.append(results[2]) |
|
|
789 |
|
|
|
790 |
# Select the fittest individuals for reproduction using adaptive tournament selection |
|
|
791 |
selected_indices = [] |
|
|
792 |
for i in range(pop_size - elite_size): |
|
|
793 |
# Adaptive tournament size |
|
|
794 |
tournament_size = max(max(2, tournament_size_min), |
|
|
795 |
int(min(tournament_size_max, pop_size) - (generation / (opt.evolve / 10)))) |
|
|
796 |
# Perform tournament selection to choose the best individual |
|
|
797 |
tournament_indices = random.sample(range(pop_size), tournament_size) |
|
|
798 |
tournament_fitness = [fitness_scores[j] for j in tournament_indices] |
|
|
799 |
winner_index = tournament_indices[tournament_fitness.index(max(tournament_fitness))] |
|
|
800 |
selected_indices.append(winner_index) |
|
|
801 |
|
|
|
802 |
# Add the elite individuals to the selected indices |
|
|
803 |
elite_indices = [i for i in range(pop_size) if fitness_scores[i] in sorted(fitness_scores)[-elite_size:]] |
|
|
804 |
selected_indices.extend(elite_indices) |
|
|
805 |
# Create the next generation through crossover and mutation |
|
|
806 |
next_generation = [] |
|
|
807 |
for i in range(pop_size): |
|
|
808 |
parent1_index = selected_indices[random.randint(0, pop_size - 1)] |
|
|
809 |
parent2_index = selected_indices[random.randint(0, pop_size - 1)] |
|
|
810 |
# Adaptive crossover rate |
|
|
811 |
crossover_rate = max(crossover_rate_min, |
|
|
812 |
min(crossover_rate_max, crossover_rate_max - (generation / opt.evolve))) |
|
|
813 |
if random.uniform(0, 1) < crossover_rate: |
|
|
814 |
crossover_point = random.randint(1, len(hyp_GA) - 1) |
|
|
815 |
child = population[parent1_index][:crossover_point] + population[parent2_index][crossover_point:] |
|
|
816 |
else: |
|
|
817 |
child = population[parent1_index] |
|
|
818 |
# Adaptive mutation rate |
|
|
819 |
mutation_rate = max(mutation_rate_min, |
|
|
820 |
min(mutation_rate_max, mutation_rate_max - (generation / opt.evolve))) |
|
|
821 |
for j in range(len(hyp_GA)): |
|
|
822 |
if random.uniform(0, 1) < mutation_rate: |
|
|
823 |
child[j] += random.uniform(-0.1, 0.1) |
|
|
824 |
child[j] = min(max(child[j], gene_ranges[j][0]), gene_ranges[j][1]) |
|
|
825 |
next_generation.append(child) |
|
|
826 |
# Replace the old population with the new generation |
|
|
827 |
population = next_generation |
|
|
828 |
# Print the best solution found |
|
|
829 |
best_index = fitness_scores.index(max(fitness_scores)) |
|
|
830 |
best_individual = population[best_index] |
|
|
831 |
print('Best solution found:', best_individual) |
|
|
832 |
# Plot results |
|
|
833 |
plot_evolve(evolve_csv) |
|
|
834 |
LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' |
|
|
835 |
f"Results saved to {colorstr('bold', save_dir)}\n" |
|
|
836 |
f'Usage example: $ python train.py --hyp {evolve_yaml}') |
|
|
837 |
|
|
|
838 |
|
|
|
839 |
def generate_individual(input_ranges, individual_length): |
|
|
840 |
individual = [] |
|
|
841 |
for i in range(individual_length): |
|
|
842 |
lower_bound, upper_bound = input_ranges[i] |
|
|
843 |
individual.append(random.uniform(lower_bound, upper_bound)) |
|
|
844 |
return individual |
|
|
845 |
|
|
|
846 |
|
|
|
847 |
def run(**kwargs): |
|
|
848 |
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') |
|
|
849 |
opt = parse_opt(True) |
|
|
850 |
for k, v in kwargs.items(): |
|
|
851 |
setattr(opt, k, v) |
|
|
852 |
main(opt) |
|
|
853 |
return opt |
|
|
854 |
|
|
|
855 |
|
|
|
856 |
if __name__ == '__main__': |
|
|
857 |
opt = parse_opt() |
|
|
858 |
main(opt) |