|
a |
|
b/src/loss_functions/losses.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
|
|
|
4 |
|
|
|
5 |
class AsymmetricLoss(nn.Module): |
|
|
6 |
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=True): |
|
|
7 |
super(AsymmetricLoss, self).__init__() |
|
|
8 |
|
|
|
9 |
self.gamma_neg = gamma_neg |
|
|
10 |
self.gamma_pos = gamma_pos |
|
|
11 |
self.clip = clip |
|
|
12 |
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss |
|
|
13 |
self.eps = eps |
|
|
14 |
|
|
|
15 |
def forward(self, x, y): |
|
|
16 |
"""" |
|
|
17 |
Parameters |
|
|
18 |
---------- |
|
|
19 |
x: input logits |
|
|
20 |
y: targets (multi-label binarized vector) |
|
|
21 |
""" |
|
|
22 |
|
|
|
23 |
# Calculating Probabilities |
|
|
24 |
x_sigmoid = torch.sigmoid(x) |
|
|
25 |
xs_pos = x_sigmoid |
|
|
26 |
xs_neg = 1 - x_sigmoid |
|
|
27 |
|
|
|
28 |
# Asymmetric Clipping |
|
|
29 |
if self.clip is not None and self.clip > 0: |
|
|
30 |
xs_neg = (xs_neg + self.clip).clamp(max=1) |
|
|
31 |
|
|
|
32 |
# Basic CE calculation |
|
|
33 |
los_pos = y * torch.log(xs_pos.clamp(min=self.eps)) |
|
|
34 |
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps)) |
|
|
35 |
loss = los_pos + los_neg |
|
|
36 |
|
|
|
37 |
# Asymmetric Focusing |
|
|
38 |
if self.gamma_neg > 0 or self.gamma_pos > 0: |
|
|
39 |
if self.disable_torch_grad_focal_loss: |
|
|
40 |
torch.set_grad_enabled(False) |
|
|
41 |
pt0 = xs_pos * y |
|
|
42 |
pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p |
|
|
43 |
pt = pt0 + pt1 |
|
|
44 |
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y) |
|
|
45 |
one_sided_w = torch.pow(1 - pt, one_sided_gamma) |
|
|
46 |
if self.disable_torch_grad_focal_loss: |
|
|
47 |
torch.set_grad_enabled(True) |
|
|
48 |
loss *= one_sided_w |
|
|
49 |
|
|
|
50 |
return -loss.sum() |
|
|
51 |
|
|
|
52 |
|
|
|
53 |
class AsymmetricLossOptimized(nn.Module): |
|
|
54 |
''' Notice - optimized version, minimizes memory allocation and gpu uploading, |
|
|
55 |
favors inplace operations''' |
|
|
56 |
|
|
|
57 |
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False): |
|
|
58 |
super(AsymmetricLossOptimized, self).__init__() |
|
|
59 |
|
|
|
60 |
self.gamma_neg = gamma_neg |
|
|
61 |
self.gamma_pos = gamma_pos |
|
|
62 |
self.clip = clip |
|
|
63 |
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss |
|
|
64 |
self.eps = eps |
|
|
65 |
|
|
|
66 |
# prevent memory allocation and gpu uploading every iteration, and encourages inplace operations |
|
|
67 |
self.targets = self.anti_targets = self.xs_pos = self.xs_neg = self.asymmetric_w = self.loss = None |
|
|
68 |
|
|
|
69 |
def forward(self, x, y): |
|
|
70 |
"""" |
|
|
71 |
Parameters |
|
|
72 |
---------- |
|
|
73 |
x: input logits |
|
|
74 |
y: targets (multi-label binarized vector) |
|
|
75 |
""" |
|
|
76 |
|
|
|
77 |
self.targets = y |
|
|
78 |
self.anti_targets = 1 - y |
|
|
79 |
|
|
|
80 |
# Calculating Probabilities |
|
|
81 |
self.xs_pos = torch.sigmoid(x) |
|
|
82 |
self.xs_neg = 1.0 - self.xs_pos |
|
|
83 |
|
|
|
84 |
# Asymmetric Clipping |
|
|
85 |
if self.clip is not None and self.clip > 0: |
|
|
86 |
self.xs_neg.add_(self.clip).clamp_(max=1) |
|
|
87 |
|
|
|
88 |
# Basic CE calculation |
|
|
89 |
self.loss = self.targets * torch.log(self.xs_pos.clamp(min=self.eps)) |
|
|
90 |
self.loss.add_(self.anti_targets * torch.log(self.xs_neg.clamp(min=self.eps))) |
|
|
91 |
|
|
|
92 |
# Asymmetric Focusing |
|
|
93 |
if self.gamma_neg > 0 or self.gamma_pos > 0: |
|
|
94 |
if self.disable_torch_grad_focal_loss: |
|
|
95 |
torch.set_grad_enabled(False) |
|
|
96 |
self.xs_pos = self.xs_pos * self.targets |
|
|
97 |
self.xs_neg = self.xs_neg * self.anti_targets |
|
|
98 |
self.asymmetric_w = torch.pow(1 - self.xs_pos - self.xs_neg, |
|
|
99 |
self.gamma_pos * self.targets + self.gamma_neg * self.anti_targets) |
|
|
100 |
if self.disable_torch_grad_focal_loss: |
|
|
101 |
torch.set_grad_enabled(True) |
|
|
102 |
self.loss *= self.asymmetric_w |
|
|
103 |
|
|
|
104 |
return -self.loss.sum() |
|
|
105 |
|
|
|
106 |
|
|
|
107 |
class ASLSingleLabel(nn.Module): |
|
|
108 |
''' |
|
|
109 |
This loss is intended for single-label classification problems |
|
|
110 |
''' |
|
|
111 |
def __init__(self, gamma_pos=0, gamma_neg=4, eps: float = 0.1, reduction='mean'): |
|
|
112 |
super(ASLSingleLabel, self).__init__() |
|
|
113 |
|
|
|
114 |
self.eps = eps |
|
|
115 |
self.logsoftmax = nn.LogSoftmax(dim=-1) |
|
|
116 |
self.targets_classes = [] |
|
|
117 |
self.gamma_pos = gamma_pos |
|
|
118 |
self.gamma_neg = gamma_neg |
|
|
119 |
self.reduction = reduction |
|
|
120 |
|
|
|
121 |
def forward(self, inputs, target): |
|
|
122 |
''' |
|
|
123 |
"input" dimensions: - (batch_size,number_classes) |
|
|
124 |
"target" dimensions: - (batch_size) |
|
|
125 |
''' |
|
|
126 |
num_classes = inputs.size()[-1] |
|
|
127 |
log_preds = self.logsoftmax(inputs) |
|
|
128 |
self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1) |
|
|
129 |
|
|
|
130 |
# ASL weights |
|
|
131 |
targets = self.targets_classes |
|
|
132 |
anti_targets = 1 - targets |
|
|
133 |
xs_pos = torch.exp(log_preds) |
|
|
134 |
xs_neg = 1 - xs_pos |
|
|
135 |
xs_pos = xs_pos * targets |
|
|
136 |
xs_neg = xs_neg * anti_targets |
|
|
137 |
asymmetric_w = torch.pow(1 - xs_pos - xs_neg, |
|
|
138 |
self.gamma_pos * targets + self.gamma_neg * anti_targets) |
|
|
139 |
log_preds = log_preds * asymmetric_w |
|
|
140 |
|
|
|
141 |
if self.eps > 0: # label smoothing |
|
|
142 |
self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes) |
|
|
143 |
|
|
|
144 |
# loss calculation |
|
|
145 |
loss = - self.targets_classes.mul(log_preds) |
|
|
146 |
|
|
|
147 |
loss = loss.sum(dim=-1) |
|
|
148 |
if self.reduction == 'mean': |
|
|
149 |
loss = loss.mean() |
|
|
150 |
|
|
|
151 |
return loss |