|
a |
|
b/segment/val.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Validate a trained YOLOv5 segment model on a segment dataset |
|
|
4 |
|
|
|
5 |
Usage: |
|
|
6 |
$ bash data/scripts/get_coco.sh --val --segments # download COCO-segments val split (1G, 5000 images) |
|
|
7 |
$ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate COCO-segments |
|
|
8 |
|
|
|
9 |
Usage - formats: |
|
|
10 |
$ python segment/val.py --weights yolov5s-seg.pt # PyTorch |
|
|
11 |
yolov5s-seg.torchscript # TorchScript |
|
|
12 |
yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn |
|
|
13 |
yolov5s-seg_openvino_label # OpenVINO |
|
|
14 |
yolov5s-seg.engine # TensorRT |
|
|
15 |
yolov5s-seg.mlmodel # CoreML (macOS-only) |
|
|
16 |
yolov5s-seg_saved_model # TensorFlow SavedModel |
|
|
17 |
yolov5s-seg.pb # TensorFlow GraphDef |
|
|
18 |
yolov5s-seg.tflite # TensorFlow Lite |
|
|
19 |
yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU |
|
|
20 |
yolov5s-seg_paddle_model # PaddlePaddle |
|
|
21 |
""" |
|
|
22 |
|
|
|
23 |
import argparse |
|
|
24 |
import json |
|
|
25 |
import os |
|
|
26 |
import subprocess |
|
|
27 |
import sys |
|
|
28 |
from multiprocessing.pool import ThreadPool |
|
|
29 |
from pathlib import Path |
|
|
30 |
|
|
|
31 |
import numpy as np |
|
|
32 |
import torch |
|
|
33 |
from tqdm import tqdm |
|
|
34 |
|
|
|
35 |
FILE = Path(__file__).resolve() |
|
|
36 |
ROOT = FILE.parents[1] # YOLOv5 root directory |
|
|
37 |
if str(ROOT) not in sys.path: |
|
|
38 |
sys.path.append(str(ROOT)) # add ROOT to PATH |
|
|
39 |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative |
|
|
40 |
|
|
|
41 |
import torch.nn.functional as F |
|
|
42 |
|
|
|
43 |
from models.common import DetectMultiBackend |
|
|
44 |
from models.yolo import SegmentationModel |
|
|
45 |
from utils.callbacks import Callbacks |
|
|
46 |
from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, |
|
|
47 |
check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path, |
|
|
48 |
non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh) |
|
|
49 |
from utils.metrics import ConfusionMatrix, box_iou |
|
|
50 |
from utils.plots import output_to_target, plot_val_study |
|
|
51 |
from utils.segment.dataloaders import create_dataloader |
|
|
52 |
from utils.segment.general import mask_iou, process_mask, process_mask_native, scale_image |
|
|
53 |
from utils.segment.metrics import Metrics, ap_per_class_box_and_mask |
|
|
54 |
from utils.segment.plots import plot_images_and_masks |
|
|
55 |
from utils.torch_utils import de_parallel, select_device, smart_inference_mode |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
def save_one_txt(predn, save_conf, shape, file): |
|
|
59 |
# Save one txt result |
|
|
60 |
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh |
|
|
61 |
for *xyxy, conf, cls in predn.tolist(): |
|
|
62 |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh |
|
|
63 |
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format |
|
|
64 |
with open(file, 'a') as f: |
|
|
65 |
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
def save_one_json(predn, jdict, path, class_map, pred_masks): |
|
|
69 |
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} |
|
|
70 |
from pycocotools.mask import encode |
|
|
71 |
|
|
|
72 |
def single_encode(x): |
|
|
73 |
rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0] |
|
|
74 |
rle['counts'] = rle['counts'].decode('utf-8') |
|
|
75 |
return rle |
|
|
76 |
|
|
|
77 |
image_id = int(path.stem) if path.stem.isnumeric() else path.stem |
|
|
78 |
box = xyxy2xywh(predn[:, :4]) # xywh |
|
|
79 |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner |
|
|
80 |
pred_masks = np.transpose(pred_masks, (2, 0, 1)) |
|
|
81 |
with ThreadPool(NUM_THREADS) as pool: |
|
|
82 |
rles = pool.map(single_encode, pred_masks) |
|
|
83 |
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): |
|
|
84 |
jdict.append({ |
|
|
85 |
'image_id': image_id, |
|
|
86 |
'category_id': class_map[int(p[5])], |
|
|
87 |
'bbox': [round(x, 3) for x in b], |
|
|
88 |
'score': round(p[4], 5), |
|
|
89 |
'segmentation': rles[i]}) |
|
|
90 |
|
|
|
91 |
|
|
|
92 |
def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False): |
|
|
93 |
""" |
|
|
94 |
Return correct prediction matrix |
|
|
95 |
Arguments: |
|
|
96 |
detections (array[N, 6]), x1, y1, x2, y2, conf, class |
|
|
97 |
labels (array[M, 5]), class, x1, y1, x2, y2 |
|
|
98 |
Returns: |
|
|
99 |
correct (array[N, 10]), for 10 IoU levels |
|
|
100 |
""" |
|
|
101 |
if masks: |
|
|
102 |
if overlap: |
|
|
103 |
nl = len(labels) |
|
|
104 |
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 |
|
|
105 |
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) |
|
|
106 |
gt_masks = torch.where(gt_masks == index, 1.0, 0.0) |
|
|
107 |
if gt_masks.shape[1:] != pred_masks.shape[1:]: |
|
|
108 |
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0] |
|
|
109 |
gt_masks = gt_masks.gt_(0.5) |
|
|
110 |
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) |
|
|
111 |
else: # boxes |
|
|
112 |
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
|
113 |
|
|
|
114 |
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) |
|
|
115 |
correct_class = labels[:, 0:1] == detections[:, 5] |
|
|
116 |
for i in range(len(iouv)): |
|
|
117 |
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match |
|
|
118 |
if x[0].shape[0]: |
|
|
119 |
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou] |
|
|
120 |
if x[0].shape[0] > 1: |
|
|
121 |
matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
122 |
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
|
123 |
# matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
124 |
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
|
125 |
correct[matches[:, 1].astype(int), i] = True |
|
|
126 |
return torch.tensor(correct, dtype=torch.bool, device=iouv.device) |
|
|
127 |
|
|
|
128 |
|
|
|
129 |
@smart_inference_mode() |
|
|
130 |
def run( |
|
|
131 |
data, |
|
|
132 |
weights=None, # model.pt path(s) |
|
|
133 |
batch_size=32, # batch size |
|
|
134 |
imgsz=640, # inference size (pixels) |
|
|
135 |
conf_thres=0.001, # confidence threshold |
|
|
136 |
iou_thres=0.6, # NMS IoU threshold |
|
|
137 |
max_det=300, # maximum detections per image |
|
|
138 |
task='val', # train, val, test, speed or study |
|
|
139 |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu |
|
|
140 |
workers=8, # max dataloader workers (per RANK in DDP mode) |
|
|
141 |
single_cls=False, # treat as single-class dataset |
|
|
142 |
augment=False, # augmented inference |
|
|
143 |
verbose=False, # verbose output |
|
|
144 |
save_txt=False, # save results to *.txt |
|
|
145 |
save_hybrid=False, # save label+prediction hybrid results to *.txt |
|
|
146 |
save_conf=False, # save confidences in --save-txt labels |
|
|
147 |
save_json=False, # save a COCO-JSON results file |
|
|
148 |
project=ROOT / 'runs/val-seg', # save to project/name |
|
|
149 |
name='exp', # save to project/name |
|
|
150 |
exist_ok=False, # existing project/name ok, do not increment |
|
|
151 |
half=True, # use FP16 half-precision inference |
|
|
152 |
dnn=False, # use OpenCV DNN for ONNX inference |
|
|
153 |
model=None, |
|
|
154 |
dataloader=None, |
|
|
155 |
save_dir=Path(''), |
|
|
156 |
plots=True, |
|
|
157 |
overlap=False, |
|
|
158 |
mask_downsample_ratio=1, |
|
|
159 |
compute_loss=None, |
|
|
160 |
callbacks=Callbacks(), |
|
|
161 |
): |
|
|
162 |
if save_json: |
|
|
163 |
check_requirements('pycocotools>=2.0.6') |
|
|
164 |
process = process_mask_native # more accurate |
|
|
165 |
else: |
|
|
166 |
process = process_mask # faster |
|
|
167 |
|
|
|
168 |
# Initialize/load model and set device |
|
|
169 |
training = model is not None |
|
|
170 |
if training: # called by train.py |
|
|
171 |
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model |
|
|
172 |
half &= device.type != 'cpu' # half precision only supported on CUDA |
|
|
173 |
model.half() if half else model.float() |
|
|
174 |
nm = de_parallel(model).model[-1].nm # number of masks |
|
|
175 |
else: # called directly |
|
|
176 |
device = select_device(device, batch_size=batch_size) |
|
|
177 |
|
|
|
178 |
# Directories |
|
|
179 |
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run |
|
|
180 |
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir |
|
|
181 |
|
|
|
182 |
# Load model |
|
|
183 |
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) |
|
|
184 |
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine |
|
|
185 |
imgsz = check_img_size(imgsz, s=stride) # check image size |
|
|
186 |
half = model.fp16 # FP16 supported on limited backends with CUDA |
|
|
187 |
nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32 # number of masks |
|
|
188 |
if engine: |
|
|
189 |
batch_size = model.batch_size |
|
|
190 |
else: |
|
|
191 |
device = model.device |
|
|
192 |
if not (pt or jit): |
|
|
193 |
batch_size = 1 # export.py models default to batch-size 1 |
|
|
194 |
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') |
|
|
195 |
|
|
|
196 |
# Data |
|
|
197 |
data = check_dataset(data) # check |
|
|
198 |
|
|
|
199 |
# Configure |
|
|
200 |
model.eval() |
|
|
201 |
cuda = device.type != 'cpu' |
|
|
202 |
is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset |
|
|
203 |
nc = 1 if single_cls else int(data['nc']) # number of classes |
|
|
204 |
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95 |
|
|
205 |
niou = iouv.numel() |
|
|
206 |
|
|
|
207 |
# Dataloader |
|
|
208 |
if not training: |
|
|
209 |
if pt and not single_cls: # check --weights are trained on --data |
|
|
210 |
ncm = model.model.nc |
|
|
211 |
assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \ |
|
|
212 |
f'classes). Pass correct combination of --weights and --data that are trained together.' |
|
|
213 |
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup |
|
|
214 |
pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks |
|
|
215 |
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images |
|
|
216 |
dataloader = create_dataloader(data[task], |
|
|
217 |
imgsz, |
|
|
218 |
batch_size, |
|
|
219 |
stride, |
|
|
220 |
single_cls, |
|
|
221 |
pad=pad, |
|
|
222 |
rect=rect, |
|
|
223 |
workers=workers, |
|
|
224 |
prefix=colorstr(f'{task}: '), |
|
|
225 |
overlap_mask=overlap, |
|
|
226 |
mask_downsample_ratio=mask_downsample_ratio)[0] |
|
|
227 |
|
|
|
228 |
seen = 0 |
|
|
229 |
confusion_matrix = ConfusionMatrix(nc=nc) |
|
|
230 |
names = model.names if hasattr(model, 'names') else model.module.names # get class names |
|
|
231 |
if isinstance(names, (list, tuple)): # old format |
|
|
232 |
names = dict(enumerate(names)) |
|
|
233 |
class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) |
|
|
234 |
s = ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P', 'R', |
|
|
235 |
'mAP50', 'mAP50-95)') |
|
|
236 |
dt = Profile(device=device), Profile(device=device), Profile(device=device) |
|
|
237 |
metrics = Metrics() |
|
|
238 |
loss = torch.zeros(4, device=device) |
|
|
239 |
jdict, stats = [], [] |
|
|
240 |
# callbacks.run('on_val_start') |
|
|
241 |
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar |
|
|
242 |
for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar): |
|
|
243 |
# callbacks.run('on_val_batch_start') |
|
|
244 |
with dt[0]: |
|
|
245 |
if cuda: |
|
|
246 |
im = im.to(device, non_blocking=True) |
|
|
247 |
targets = targets.to(device) |
|
|
248 |
masks = masks.to(device) |
|
|
249 |
masks = masks.float() |
|
|
250 |
im = im.half() if half else im.float() # uint8 to fp16/32 |
|
|
251 |
im /= 255 # 0 - 255 to 0.0 - 1.0 |
|
|
252 |
nb, _, height, width = im.shape # batch size, channels, height, width |
|
|
253 |
|
|
|
254 |
# Inference |
|
|
255 |
with dt[1]: |
|
|
256 |
preds, protos, train_out = model(im) if compute_loss else (*model(im, augment=augment)[:2], None) |
|
|
257 |
|
|
|
258 |
# Loss |
|
|
259 |
if compute_loss: |
|
|
260 |
loss += compute_loss((train_out, protos), targets, masks)[1] # box, obj, cls |
|
|
261 |
|
|
|
262 |
# NMS |
|
|
263 |
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels |
|
|
264 |
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling |
|
|
265 |
with dt[2]: |
|
|
266 |
preds = non_max_suppression(preds, |
|
|
267 |
conf_thres, |
|
|
268 |
iou_thres, |
|
|
269 |
labels=lb, |
|
|
270 |
multi_label=True, |
|
|
271 |
agnostic=single_cls, |
|
|
272 |
max_det=max_det, |
|
|
273 |
nm=nm) |
|
|
274 |
|
|
|
275 |
# Metrics |
|
|
276 |
plot_masks = [] # masks for plotting |
|
|
277 |
for si, (pred, proto) in enumerate(zip(preds, protos)): |
|
|
278 |
labels = targets[targets[:, 0] == si, 1:] |
|
|
279 |
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions |
|
|
280 |
path, shape = Path(paths[si]), shapes[si][0] |
|
|
281 |
correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init |
|
|
282 |
correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init |
|
|
283 |
seen += 1 |
|
|
284 |
|
|
|
285 |
if npr == 0: |
|
|
286 |
if nl: |
|
|
287 |
stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0])) |
|
|
288 |
if plots: |
|
|
289 |
confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) |
|
|
290 |
continue |
|
|
291 |
|
|
|
292 |
# Masks |
|
|
293 |
midx = [si] if overlap else targets[:, 0] == si |
|
|
294 |
gt_masks = masks[midx] |
|
|
295 |
pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:]) |
|
|
296 |
|
|
|
297 |
# Predictions |
|
|
298 |
if single_cls: |
|
|
299 |
pred[:, 5] = 0 |
|
|
300 |
predn = pred.clone() |
|
|
301 |
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred |
|
|
302 |
|
|
|
303 |
# Evaluate |
|
|
304 |
if nl: |
|
|
305 |
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes |
|
|
306 |
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels |
|
|
307 |
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels |
|
|
308 |
correct_bboxes = process_batch(predn, labelsn, iouv) |
|
|
309 |
correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True) |
|
|
310 |
if plots: |
|
|
311 |
confusion_matrix.process_batch(predn, labelsn) |
|
|
312 |
stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls) |
|
|
313 |
|
|
|
314 |
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) |
|
|
315 |
if plots and batch_i < 3: |
|
|
316 |
plot_masks.append(pred_masks[:15]) # filter top 15 to plot |
|
|
317 |
|
|
|
318 |
# Save/log |
|
|
319 |
if save_txt: |
|
|
320 |
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') |
|
|
321 |
if save_json: |
|
|
322 |
pred_masks = scale_image(im[si].shape[1:], |
|
|
323 |
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1]) |
|
|
324 |
save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary |
|
|
325 |
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) |
|
|
326 |
|
|
|
327 |
# Plot images |
|
|
328 |
if plots and batch_i < 3: |
|
|
329 |
if len(plot_masks): |
|
|
330 |
plot_masks = torch.cat(plot_masks, dim=0) |
|
|
331 |
plot_images_and_masks(im, targets, masks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) |
|
|
332 |
plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, paths, |
|
|
333 |
save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred |
|
|
334 |
|
|
|
335 |
# callbacks.run('on_val_batch_end') |
|
|
336 |
|
|
|
337 |
# Compute metrics |
|
|
338 |
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy |
|
|
339 |
if len(stats) and stats[0].any(): |
|
|
340 |
results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names) |
|
|
341 |
metrics.update(results) |
|
|
342 |
nt = np.bincount(stats[4].astype(int), minlength=nc) # number of targets per class |
|
|
343 |
|
|
|
344 |
# Print results |
|
|
345 |
pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format |
|
|
346 |
LOGGER.info(pf % ('all', seen, nt.sum(), *metrics.mean_results())) |
|
|
347 |
if nt.sum() == 0: |
|
|
348 |
LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels') |
|
|
349 |
|
|
|
350 |
# Print results per class |
|
|
351 |
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): |
|
|
352 |
for i, c in enumerate(metrics.ap_class_index): |
|
|
353 |
LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i))) |
|
|
354 |
|
|
|
355 |
# Print speeds |
|
|
356 |
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image |
|
|
357 |
if not training: |
|
|
358 |
shape = (batch_size, 3, imgsz, imgsz) |
|
|
359 |
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) |
|
|
360 |
|
|
|
361 |
# Plots |
|
|
362 |
if plots: |
|
|
363 |
confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) |
|
|
364 |
# callbacks.run('on_val_end') |
|
|
365 |
|
|
|
366 |
mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results() |
|
|
367 |
|
|
|
368 |
# Save JSON |
|
|
369 |
if save_json and len(jdict): |
|
|
370 |
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights |
|
|
371 |
anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json')) # annotations |
|
|
372 |
pred_json = str(save_dir / f'{w}_predictions.json') # predictions |
|
|
373 |
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...') |
|
|
374 |
with open(pred_json, 'w') as f: |
|
|
375 |
json.dump(jdict, f) |
|
|
376 |
|
|
|
377 |
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb |
|
|
378 |
from pycocotools.coco import COCO |
|
|
379 |
from pycocotools.cocoeval import COCOeval |
|
|
380 |
|
|
|
381 |
anno = COCO(anno_json) # init annotations api |
|
|
382 |
pred = anno.loadRes(pred_json) # init predictions api |
|
|
383 |
results = [] |
|
|
384 |
for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'): |
|
|
385 |
if is_coco: |
|
|
386 |
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # img ID to evaluate |
|
|
387 |
eval.evaluate() |
|
|
388 |
eval.accumulate() |
|
|
389 |
eval.summarize() |
|
|
390 |
results.extend(eval.stats[:2]) # update results (mAP@0.5:0.95, mAP@0.5) |
|
|
391 |
map_bbox, map50_bbox, map_mask, map50_mask = results |
|
|
392 |
except Exception as e: |
|
|
393 |
LOGGER.info(f'pycocotools unable to run: {e}') |
|
|
394 |
|
|
|
395 |
# Return results |
|
|
396 |
model.float() # for training |
|
|
397 |
if not training: |
|
|
398 |
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' |
|
|
399 |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") |
|
|
400 |
final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask |
|
|
401 |
return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t |
|
|
402 |
|
|
|
403 |
|
|
|
404 |
def parse_opt(): |
|
|
405 |
parser = argparse.ArgumentParser() |
|
|
406 |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path') |
|
|
407 |
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)') |
|
|
408 |
parser.add_argument('--batch-size', type=int, default=32, help='batch size') |
|
|
409 |
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') |
|
|
410 |
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') |
|
|
411 |
parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') |
|
|
412 |
parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image') |
|
|
413 |
parser.add_argument('--task', default='val', help='train, val, test, speed or study') |
|
|
414 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
415 |
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') |
|
|
416 |
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') |
|
|
417 |
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
|
418 |
parser.add_argument('--verbose', action='store_true', help='report mAP by class') |
|
|
419 |
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
|
420 |
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') |
|
|
421 |
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') |
|
|
422 |
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') |
|
|
423 |
parser.add_argument('--project', default=ROOT / 'runs/val-seg', help='save results to project/name') |
|
|
424 |
parser.add_argument('--name', default='exp', help='save to project/name') |
|
|
425 |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
|
426 |
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
|
427 |
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') |
|
|
428 |
opt = parser.parse_args() |
|
|
429 |
opt.data = check_yaml(opt.data) # check YAML |
|
|
430 |
# opt.save_json |= opt.data.endswith('coco.yaml') |
|
|
431 |
opt.save_txt |= opt.save_hybrid |
|
|
432 |
print_args(vars(opt)) |
|
|
433 |
return opt |
|
|
434 |
|
|
|
435 |
|
|
|
436 |
def main(opt): |
|
|
437 |
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) |
|
|
438 |
|
|
|
439 |
if opt.task in ('train', 'val', 'test'): # run normally |
|
|
440 |
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466 |
|
|
441 |
LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results') |
|
|
442 |
if opt.save_hybrid: |
|
|
443 |
LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone') |
|
|
444 |
run(**vars(opt)) |
|
|
445 |
|
|
|
446 |
else: |
|
|
447 |
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] |
|
|
448 |
opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results |
|
|
449 |
if opt.task == 'speed': # speed benchmarks |
|
|
450 |
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... |
|
|
451 |
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False |
|
|
452 |
for opt.weights in weights: |
|
|
453 |
run(**vars(opt), plots=False) |
|
|
454 |
|
|
|
455 |
elif opt.task == 'study': # speed vs mAP benchmarks |
|
|
456 |
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... |
|
|
457 |
for opt.weights in weights: |
|
|
458 |
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to |
|
|
459 |
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis |
|
|
460 |
for opt.imgsz in x: # img-size |
|
|
461 |
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...') |
|
|
462 |
r, _, t = run(**vars(opt), plots=False) |
|
|
463 |
y.append(r + t) # results and times |
|
|
464 |
np.savetxt(f, y, fmt='%10.4g') # save |
|
|
465 |
subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt']) |
|
|
466 |
plot_val_study(x=x) # plot |
|
|
467 |
else: |
|
|
468 |
raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")') |
|
|
469 |
|
|
|
470 |
|
|
|
471 |
if __name__ == '__main__': |
|
|
472 |
opt = parse_opt() |
|
|
473 |
main(opt) |