Diff of /segment/val.py [000000] .. [190ca4]

Switch to side-by-side view

--- a
+++ b/segment/val.py
@@ -0,0 +1,473 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Validate a trained YOLOv5 segment model on a segment dataset
+
+Usage:
+    $ bash data/scripts/get_coco.sh --val --segments  # download COCO-segments val split (1G, 5000 images)
+    $ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640  # validate COCO-segments
+
+Usage - formats:
+    $ python segment/val.py --weights yolov5s-seg.pt                 # PyTorch
+                                      yolov5s-seg.torchscript        # TorchScript
+                                      yolov5s-seg.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                      yolov5s-seg_openvino_label     # OpenVINO
+                                      yolov5s-seg.engine             # TensorRT
+                                      yolov5s-seg.mlmodel            # CoreML (macOS-only)
+                                      yolov5s-seg_saved_model        # TensorFlow SavedModel
+                                      yolov5s-seg.pb                 # TensorFlow GraphDef
+                                      yolov5s-seg.tflite             # TensorFlow Lite
+                                      yolov5s-seg_edgetpu.tflite     # TensorFlow Edge TPU
+                                      yolov5s-seg_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import json
+import os
+import subprocess
+import sys
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+import torch.nn.functional as F
+
+from models.common import DetectMultiBackend
+from models.yolo import SegmentationModel
+from utils.callbacks import Callbacks
+from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size,
+                           check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path,
+                           non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
+from utils.metrics import ConfusionMatrix, box_iou
+from utils.plots import output_to_target, plot_val_study
+from utils.segment.dataloaders import create_dataloader
+from utils.segment.general import mask_iou, process_mask, process_mask_native, scale_image
+from utils.segment.metrics import Metrics, ap_per_class_box_and_mask
+from utils.segment.plots import plot_images_and_masks
+from utils.torch_utils import de_parallel, select_device, smart_inference_mode
+
+
+def save_one_txt(predn, save_conf, shape, file):
+    # Save one txt result
+    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
+    for *xyxy, conf, cls in predn.tolist():
+        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
+        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
+        with open(file, 'a') as f:
+            f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map, pred_masks):
+    # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+    from pycocotools.mask import encode
+
+    def single_encode(x):
+        rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
+        rle['counts'] = rle['counts'].decode('utf-8')
+        return rle
+
+    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+    box = xyxy2xywh(predn[:, :4])  # xywh
+    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
+    pred_masks = np.transpose(pred_masks, (2, 0, 1))
+    with ThreadPool(NUM_THREADS) as pool:
+        rles = pool.map(single_encode, pred_masks)
+    for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
+        jdict.append({
+            'image_id': image_id,
+            'category_id': class_map[int(p[5])],
+            'bbox': [round(x, 3) for x in b],
+            'score': round(p[4], 5),
+            'segmentation': rles[i]})
+
+
+def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
+    """
+    Return correct prediction matrix
+    Arguments:
+        detections (array[N, 6]), x1, y1, x2, y2, conf, class
+        labels (array[M, 5]), class, x1, y1, x2, y2
+    Returns:
+        correct (array[N, 10]), for 10 IoU levels
+    """
+    if masks:
+        if overlap:
+            nl = len(labels)
+            index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
+            gt_masks = gt_masks.repeat(nl, 1, 1)  # shape(1,640,640) -> (n,640,640)
+            gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
+        if gt_masks.shape[1:] != pred_masks.shape[1:]:
+            gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0]
+            gt_masks = gt_masks.gt_(0.5)
+        iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
+    else:  # boxes
+        iou = box_iou(labels[:, 1:], detections[:, :4])
+
+    correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+    correct_class = labels[:, 0:1] == detections[:, 5]
+    for i in range(len(iouv)):
+        x = torch.where((iou >= iouv[i]) & correct_class)  # IoU > threshold and classes match
+        if x[0].shape[0]:
+            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detect, iou]
+            if x[0].shape[0] > 1:
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+                # matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+            correct[matches[:, 1].astype(int), i] = True
+    return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+@smart_inference_mode()
+def run(
+        data,
+        weights=None,  # model.pt path(s)
+        batch_size=32,  # batch size
+        imgsz=640,  # inference size (pixels)
+        conf_thres=0.001,  # confidence threshold
+        iou_thres=0.6,  # NMS IoU threshold
+        max_det=300,  # maximum detections per image
+        task='val',  # train, val, test, speed or study
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        workers=8,  # max dataloader workers (per RANK in DDP mode)
+        single_cls=False,  # treat as single-class dataset
+        augment=False,  # augmented inference
+        verbose=False,  # verbose output
+        save_txt=False,  # save results to *.txt
+        save_hybrid=False,  # save label+prediction hybrid results to *.txt
+        save_conf=False,  # save confidences in --save-txt labels
+        save_json=False,  # save a COCO-JSON results file
+        project=ROOT / 'runs/val-seg',  # save to project/name
+        name='exp',  # save to project/name
+        exist_ok=False,  # existing project/name ok, do not increment
+        half=True,  # use FP16 half-precision inference
+        dnn=False,  # use OpenCV DNN for ONNX inference
+        model=None,
+        dataloader=None,
+        save_dir=Path(''),
+        plots=True,
+        overlap=False,
+        mask_downsample_ratio=1,
+        compute_loss=None,
+        callbacks=Callbacks(),
+):
+    if save_json:
+        check_requirements('pycocotools>=2.0.6')
+        process = process_mask_native  # more accurate
+    else:
+        process = process_mask  # faster
+
+    # Initialize/load model and set device
+    training = model is not None
+    if training:  # called by train.py
+        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
+        half &= device.type != 'cpu'  # half precision only supported on CUDA
+        model.half() if half else model.float()
+        nm = de_parallel(model).model[-1].nm  # number of masks
+    else:  # called directly
+        device = select_device(device, batch_size=batch_size)
+
+        # Directories
+        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+        # Load model
+        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+        imgsz = check_img_size(imgsz, s=stride)  # check image size
+        half = model.fp16  # FP16 supported on limited backends with CUDA
+        nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32  # number of masks
+        if engine:
+            batch_size = model.batch_size
+        else:
+            device = model.device
+            if not (pt or jit):
+                batch_size = 1  # export.py models default to batch-size 1
+                LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+        # Data
+        data = check_dataset(data)  # check
+
+    # Configure
+    model.eval()
+    cuda = device.type != 'cpu'
+    is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt')  # COCO dataset
+    nc = 1 if single_cls else int(data['nc'])  # number of classes
+    iouv = torch.linspace(0.5, 0.95, 10, device=device)  # iou vector for mAP@0.5:0.95
+    niou = iouv.numel()
+
+    # Dataloader
+    if not training:
+        if pt and not single_cls:  # check --weights are trained on --data
+            ncm = model.model.nc
+            assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
+                              f'classes). Pass correct combination of --weights and --data that are trained together.'
+        model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz))  # warmup
+        pad, rect = (0.0, False) if task == 'speed' else (0.5, pt)  # square inference for benchmarks
+        task = task if task in ('train', 'val', 'test') else 'val'  # path to train/val/test images
+        dataloader = create_dataloader(data[task],
+                                       imgsz,
+                                       batch_size,
+                                       stride,
+                                       single_cls,
+                                       pad=pad,
+                                       rect=rect,
+                                       workers=workers,
+                                       prefix=colorstr(f'{task}: '),
+                                       overlap_mask=overlap,
+                                       mask_downsample_ratio=mask_downsample_ratio)[0]
+
+    seen = 0
+    confusion_matrix = ConfusionMatrix(nc=nc)
+    names = model.names if hasattr(model, 'names') else model.module.names  # get class names
+    if isinstance(names, (list, tuple)):  # old format
+        names = dict(enumerate(names))
+    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+    s = ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P', 'R',
+                                  'mAP50', 'mAP50-95)')
+    dt = Profile(device=device), Profile(device=device), Profile(device=device)
+    metrics = Metrics()
+    loss = torch.zeros(4, device=device)
+    jdict, stats = [], []
+    # callbacks.run('on_val_start')
+    pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT)  # progress bar
+    for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar):
+        # callbacks.run('on_val_batch_start')
+        with dt[0]:
+            if cuda:
+                im = im.to(device, non_blocking=True)
+                targets = targets.to(device)
+                masks = masks.to(device)
+            masks = masks.float()
+            im = im.half() if half else im.float()  # uint8 to fp16/32
+            im /= 255  # 0 - 255 to 0.0 - 1.0
+            nb, _, height, width = im.shape  # batch size, channels, height, width
+
+        # Inference
+        with dt[1]:
+            preds, protos, train_out = model(im) if compute_loss else (*model(im, augment=augment)[:2], None)
+
+        # Loss
+        if compute_loss:
+            loss += compute_loss((train_out, protos), targets, masks)[1]  # box, obj, cls
+
+        # NMS
+        targets[:, 2:] *= torch.tensor((width, height, width, height), device=device)  # to pixels
+        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
+        with dt[2]:
+            preds = non_max_suppression(preds,
+                                        conf_thres,
+                                        iou_thres,
+                                        labels=lb,
+                                        multi_label=True,
+                                        agnostic=single_cls,
+                                        max_det=max_det,
+                                        nm=nm)
+
+        # Metrics
+        plot_masks = []  # masks for plotting
+        for si, (pred, proto) in enumerate(zip(preds, protos)):
+            labels = targets[targets[:, 0] == si, 1:]
+            nl, npr = labels.shape[0], pred.shape[0]  # number of labels, predictions
+            path, shape = Path(paths[si]), shapes[si][0]
+            correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
+            correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
+            seen += 1
+
+            if npr == 0:
+                if nl:
+                    stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0]))
+                    if plots:
+                        confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+                continue
+
+            # Masks
+            midx = [si] if overlap else targets[:, 0] == si
+            gt_masks = masks[midx]
+            pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:])
+
+            # Predictions
+            if single_cls:
+                pred[:, 5] = 0
+            predn = pred.clone()
+            scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred
+
+            # Evaluate
+            if nl:
+                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
+                scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
+                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
+                correct_bboxes = process_batch(predn, labelsn, iouv)
+                correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
+                if plots:
+                    confusion_matrix.process_batch(predn, labelsn)
+            stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0]))  # (conf, pcls, tcls)
+
+            pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
+            if plots and batch_i < 3:
+                plot_masks.append(pred_masks[:15])  # filter top 15 to plot
+
+            # Save/log
+            if save_txt:
+                save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
+            if save_json:
+                pred_masks = scale_image(im[si].shape[1:],
+                                         pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
+                save_one_json(predn, jdict, path, class_map, pred_masks)  # append to COCO-JSON dictionary
+            # callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+        # Plot images
+        if plots and batch_i < 3:
+            if len(plot_masks):
+                plot_masks = torch.cat(plot_masks, dim=0)
+            plot_images_and_masks(im, targets, masks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)
+            plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, paths,
+                                  save_dir / f'val_batch{batch_i}_pred.jpg', names)  # pred
+
+        # callbacks.run('on_val_batch_end')
+
+    # Compute metrics
+    stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)]  # to numpy
+    if len(stats) and stats[0].any():
+        results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names)
+        metrics.update(results)
+    nt = np.bincount(stats[4].astype(int), minlength=nc)  # number of targets per class
+
+    # Print results
+    pf = '%22s' + '%11i' * 2 + '%11.3g' * 8  # print format
+    LOGGER.info(pf % ('all', seen, nt.sum(), *metrics.mean_results()))
+    if nt.sum() == 0:
+        LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
+
+    # Print results per class
+    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+        for i, c in enumerate(metrics.ap_class_index):
+            LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i)))
+
+    # Print speeds
+    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
+    if not training:
+        shape = (batch_size, 3, imgsz, imgsz)
+        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+    # Plots
+    if plots:
+        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+    # callbacks.run('on_val_end')
+
+    mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results()
+
+    # Save JSON
+    if save_json and len(jdict):
+        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
+        anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json'))  # annotations
+        pred_json = str(save_dir / f'{w}_predictions.json')  # predictions
+        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+        with open(pred_json, 'w') as f:
+            json.dump(jdict, f)
+
+        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+            from pycocotools.coco import COCO
+            from pycocotools.cocoeval import COCOeval
+
+            anno = COCO(anno_json)  # init annotations api
+            pred = anno.loadRes(pred_json)  # init predictions api
+            results = []
+            for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'):
+                if is_coco:
+                    eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files]  # img ID to evaluate
+                eval.evaluate()
+                eval.accumulate()
+                eval.summarize()
+                results.extend(eval.stats[:2])  # update results (mAP@0.5:0.95, mAP@0.5)
+            map_bbox, map50_bbox, map_mask, map50_mask = results
+        except Exception as e:
+            LOGGER.info(f'pycocotools unable to run: {e}')
+
+    # Return results
+    model.float()  # for training
+    if not training:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask
+    return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)')
+    parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+    parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+    parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
+    parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
+    parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+    parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+    parser.add_argument('--project', default=ROOT / 'runs/val-seg', help='save results to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    opt = parser.parse_args()
+    opt.data = check_yaml(opt.data)  # check YAML
+    # opt.save_json |= opt.data.endswith('coco.yaml')
+    opt.save_txt |= opt.save_hybrid
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
+
+    if opt.task in ('train', 'val', 'test'):  # run normally
+        if opt.conf_thres > 0.001:  # https://github.com/ultralytics/yolov5/issues/1466
+            LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
+        if opt.save_hybrid:
+            LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone')
+        run(**vars(opt))
+
+    else:
+        weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+        opt.half = torch.cuda.is_available() and opt.device != 'cpu'  # FP16 for fastest results
+        if opt.task == 'speed':  # speed benchmarks
+            # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
+            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+            for opt.weights in weights:
+                run(**vars(opt), plots=False)
+
+        elif opt.task == 'study':  # speed vs mAP benchmarks
+            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
+            for opt.weights in weights:
+                f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt'  # filename to save to
+                x, y = list(range(256, 1536 + 128, 128)), []  # x axis (image sizes), y axis
+                for opt.imgsz in x:  # img-size
+                    LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+                    r, _, t = run(**vars(opt), plots=False)
+                    y.append(r + t)  # results and times
+                np.savetxt(f, y, fmt='%10.4g')  # save
+            subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt'])
+            plot_val_study(x=x)  # plot
+        else:
+            raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)