Diff of /segment/predict.py [000000] .. [190ca4]

Switch to side-by-side view

--- a
+++ b/segment/predict.py
@@ -0,0 +1,285 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Run YOLOv5 segmentation inference on images, videos, directories, streams, etc.
+
+Usage - sources:
+    $ python segment/predict.py --weights yolov5s-seg.pt --source 0                               # webcam
+                                                                  img.jpg                         # image
+                                                                  vid.mp4                         # video
+                                                                  screen                          # screenshot
+                                                                  path/                           # directory
+                                                                  list.txt                        # list of images
+                                                                  list.streams                    # list of streams
+                                                                  'path/*.jpg'                    # glob
+                                                                  'https://youtu.be/LNwODJXcvt4'  # YouTube
+                                                                  'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+
+Usage - formats:
+    $ python segment/predict.py --weights yolov5s-seg.pt                 # PyTorch
+                                          yolov5s-seg.torchscript        # TorchScript
+                                          yolov5s-seg.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                          yolov5s-seg_openvino_model     # OpenVINO
+                                          yolov5s-seg.engine             # TensorRT
+                                          yolov5s-seg.mlmodel            # CoreML (macOS-only)
+                                          yolov5s-seg_saved_model        # TensorFlow SavedModel
+                                          yolov5s-seg.pb                 # TensorFlow GraphDef
+                                          yolov5s-seg.tflite             # TensorFlow Lite
+                                          yolov5s-seg_edgetpu.tflite     # TensorFlow Edge TPU
+                                          yolov5s-seg_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from ultralytics.utils.plotting import Annotator, colors, save_one_box
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
+                           increment_path, non_max_suppression, print_args, scale_boxes, scale_segments,
+                           strip_optimizer)
+from utils.segment.general import masks2segments, process_mask, process_mask_native
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+    weights=ROOT / 'yolov5s-seg.pt',  # model.pt path(s)
+    source=ROOT / 'data/images',  # file/dir/URL/glob/screen/0(webcam)
+    data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
+    imgsz=(640, 640),  # inference size (height, width)
+    conf_thres=0.25,  # confidence threshold
+    iou_thres=0.45,  # NMS IOU threshold
+    max_det=1000,  # maximum detections per image
+    device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    view_img=False,  # show results
+    save_txt=False,  # save results to *.txt
+    save_conf=False,  # save confidences in --save-txt labels
+    save_crop=False,  # save cropped prediction boxes
+    nosave=False,  # do not save images/videos
+    classes=None,  # filter by class: --class 0, or --class 0 2 3
+    agnostic_nms=False,  # class-agnostic NMS
+    augment=False,  # augmented inference
+    visualize=False,  # visualize features
+    update=False,  # update all models
+    project=ROOT / 'runs/predict-seg',  # save results to project/name
+    name='exp',  # save results to project/name
+    exist_ok=False,  # existing project/name ok, do not increment
+    line_thickness=3,  # bounding box thickness (pixels)
+    hide_labels=False,  # hide labels
+    hide_conf=False,  # hide confidences
+    half=False,  # use FP16 half-precision inference
+    dnn=False,  # use OpenCV DNN for ONNX inference
+    vid_stride=1,  # video frame-rate stride
+    retina_masks=False,
+):
+    source = str(source)
+    save_img = not nosave and not source.endswith('.txt')  # save inference images
+    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
+    webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
+    screenshot = source.lower().startswith('screen')
+    if is_url and is_file:
+        source = check_file(source)  # download
+
+    # Directories
+    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+    # Load model
+    device = select_device(device)
+    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+    stride, names, pt = model.stride, model.names, model.pt
+    imgsz = check_img_size(imgsz, s=stride)  # check image size
+
+    # Dataloader
+    bs = 1  # batch_size
+    if webcam:
+        view_img = check_imshow(warn=True)
+        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+        bs = len(dataset)
+    elif screenshot:
+        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+    else:
+        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+    vid_path, vid_writer = [None] * bs, [None] * bs
+
+    # Run inference
+    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
+    seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
+    for path, im, im0s, vid_cap, s in dataset:
+        with dt[0]:
+            im = torch.from_numpy(im).to(model.device)
+            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
+            im /= 255  # 0 - 255 to 0.0 - 1.0
+            if len(im.shape) == 3:
+                im = im[None]  # expand for batch dim
+
+        # Inference
+        with dt[1]:
+            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
+            pred, proto = model(im, augment=augment, visualize=visualize)[:2]
+
+        # NMS
+        with dt[2]:
+            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32)
+
+        # Second-stage classifier (optional)
+        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
+
+        # Process predictions
+        for i, det in enumerate(pred):  # per image
+            seen += 1
+            if webcam:  # batch_size >= 1
+                p, im0, frame = path[i], im0s[i].copy(), dataset.count
+                s += f'{i}: '
+            else:
+                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
+
+            p = Path(p)  # to Path
+            save_path = str(save_dir / p.name)  # im.jpg
+            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
+            s += '%gx%g ' % im.shape[2:]  # print string
+            imc = im0.copy() if save_crop else im0  # for save_crop
+            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
+            if len(det):
+                if retina_masks:
+                    # scale bbox first the crop masks
+                    det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()  # rescale boxes to im0 size
+                    masks = process_mask_native(proto[i], det[:, 6:], det[:, :4], im0.shape[:2])  # HWC
+                else:
+                    masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True)  # HWC
+                    det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()  # rescale boxes to im0 size
+
+                # Segments
+                if save_txt:
+                    segments = [
+                        scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=True)
+                        for x in reversed(masks2segments(masks))]
+
+                # Print results
+                for c in det[:, 5].unique():
+                    n = (det[:, 5] == c).sum()  # detections per class
+                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
+
+                # Mask plotting
+                annotator.masks(
+                    masks,
+                    colors=[colors(x, True) for x in det[:, 5]],
+                    im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(device).permute(2, 0, 1).flip(0).contiguous() /
+                    255 if retina_masks else im[i])
+
+                # Write results
+                for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
+                    if save_txt:  # Write to file
+                        seg = segments[j].reshape(-1)  # (n,2) to (n*2)
+                        line = (cls, *seg, conf) if save_conf else (cls, *seg)  # label format
+                        with open(f'{txt_path}.txt', 'a') as f:
+                            f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+                    if save_img or save_crop or view_img:  # Add bbox to image
+                        c = int(cls)  # integer class
+                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
+                        annotator.box_label(xyxy, label, color=colors(c, True))
+                        # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
+                    if save_crop:
+                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
+
+            # Stream results
+            im0 = annotator.result()
+            if view_img:
+                if platform.system() == 'Linux' and p not in windows:
+                    windows.append(p)
+                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
+                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+                cv2.imshow(str(p), im0)
+                if cv2.waitKey(1) == ord('q'):  # 1 millisecond
+                    exit()
+
+            # Save results (image with detections)
+            if save_img:
+                if dataset.mode == 'image':
+                    cv2.imwrite(save_path, im0)
+                else:  # 'video' or 'stream'
+                    if vid_path[i] != save_path:  # new video
+                        vid_path[i] = save_path
+                        if isinstance(vid_writer[i], cv2.VideoWriter):
+                            vid_writer[i].release()  # release previous video writer
+                        if vid_cap:  # video
+                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
+                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+                        else:  # stream
+                            fps, w, h = 30, im0.shape[1], im0.shape[0]
+                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
+                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+                    vid_writer[i].write(im0)
+
+        # Print time (inference-only)
+        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
+
+    # Print results
+    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
+    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
+    if save_txt or save_img:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    if update:
+        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)')
+    parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
+    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
+    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
+    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
+    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--view-img', action='store_true', help='show results')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
+    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
+    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--visualize', action='store_true', help='visualize features')
+    parser.add_argument('--update', action='store_true', help='update all models')
+    parser.add_argument('--project', default=ROOT / 'runs/predict-seg', help='save results to project/name')
+    parser.add_argument('--name', default='exp', help='save results to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
+    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
+    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
+    parser.add_argument('--retina-masks', action='store_true', help='whether to plot masks in native resolution')
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
+    run(**vars(opt))
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)