a b/models/hub/yolov3-tiny.yaml
1
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
3
# Parameters
4
nc: 80  # number of classes
5
depth_multiple: 1.0  # model depth multiple
6
width_multiple: 1.0  # layer channel multiple
7
anchors:
8
  - [10,14, 23,27, 37,58]  # P4/16
9
  - [81,82, 135,169, 344,319]  # P5/32
10
11
# YOLOv3-tiny backbone
12
backbone:
13
  # [from, number, module, args]
14
  [[-1, 1, Conv, [16, 3, 1]],  # 0
15
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 1-P1/2
16
   [-1, 1, Conv, [32, 3, 1]],
17
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 3-P2/4
18
   [-1, 1, Conv, [64, 3, 1]],
19
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 5-P3/8
20
   [-1, 1, Conv, [128, 3, 1]],
21
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 7-P4/16
22
   [-1, 1, Conv, [256, 3, 1]],
23
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 9-P5/32
24
   [-1, 1, Conv, [512, 3, 1]],
25
   [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]],  # 11
26
   [-1, 1, nn.MaxPool2d, [2, 1, 0]],  # 12
27
  ]
28
29
# YOLOv3-tiny head
30
head:
31
  [[-1, 1, Conv, [1024, 3, 1]],
32
   [-1, 1, Conv, [256, 1, 1]],
33
   [-1, 1, Conv, [512, 3, 1]],  # 15 (P5/32-large)
34
35
   [-2, 1, Conv, [128, 1, 1]],
36
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
38
   [-1, 1, Conv, [256, 3, 1]],  # 19 (P4/16-medium)
39
40
   [[19, 15], 1, Detect, [nc, anchors]],  # Detect(P4, P5)
41
  ]