|
a |
|
b/export.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit |
|
|
4 |
|
|
|
5 |
Format | `export.py --include` | Model |
|
|
6 |
--- | --- | --- |
|
|
7 |
PyTorch | - | yolov5s.pt |
|
|
8 |
TorchScript | `torchscript` | yolov5s.torchscript |
|
|
9 |
ONNX | `onnx` | yolov5s.onnx |
|
|
10 |
OpenVINO | `openvino` | yolov5s_openvino_model/ |
|
|
11 |
TensorRT | `engine` | yolov5s.engine |
|
|
12 |
CoreML | `coreml` | yolov5s.mlmodel |
|
|
13 |
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ |
|
|
14 |
TensorFlow GraphDef | `pb` | yolov5s.pb |
|
|
15 |
TensorFlow Lite | `tflite` | yolov5s.tflite |
|
|
16 |
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite |
|
|
17 |
TensorFlow.js | `tfjs` | yolov5s_web_model/ |
|
|
18 |
PaddlePaddle | `paddle` | yolov5s_paddle_model/ |
|
|
19 |
|
|
|
20 |
Requirements: |
|
|
21 |
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU |
|
|
22 |
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU |
|
|
23 |
|
|
|
24 |
Usage: |
|
|
25 |
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ... |
|
|
26 |
|
|
|
27 |
Inference: |
|
|
28 |
$ python detect.py --weights yolov5s.pt # PyTorch |
|
|
29 |
yolov5s.torchscript # TorchScript |
|
|
30 |
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn |
|
|
31 |
yolov5s_openvino_model # OpenVINO |
|
|
32 |
yolov5s.engine # TensorRT |
|
|
33 |
yolov5s.mlmodel # CoreML (macOS-only) |
|
|
34 |
yolov5s_saved_model # TensorFlow SavedModel |
|
|
35 |
yolov5s.pb # TensorFlow GraphDef |
|
|
36 |
yolov5s.tflite # TensorFlow Lite |
|
|
37 |
yolov5s_edgetpu.tflite # TensorFlow Edge TPU |
|
|
38 |
yolov5s_paddle_model # PaddlePaddle |
|
|
39 |
|
|
|
40 |
TensorFlow.js: |
|
|
41 |
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example |
|
|
42 |
$ npm install |
|
|
43 |
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model |
|
|
44 |
$ npm start |
|
|
45 |
""" |
|
|
46 |
|
|
|
47 |
import argparse |
|
|
48 |
import contextlib |
|
|
49 |
import json |
|
|
50 |
import os |
|
|
51 |
import platform |
|
|
52 |
import re |
|
|
53 |
import subprocess |
|
|
54 |
import sys |
|
|
55 |
import time |
|
|
56 |
import warnings |
|
|
57 |
from pathlib import Path |
|
|
58 |
|
|
|
59 |
import pandas as pd |
|
|
60 |
import torch |
|
|
61 |
from torch.utils.mobile_optimizer import optimize_for_mobile |
|
|
62 |
|
|
|
63 |
FILE = Path(__file__).resolve() |
|
|
64 |
ROOT = FILE.parents[0] # YOLOv5 root directory |
|
|
65 |
if str(ROOT) not in sys.path: |
|
|
66 |
sys.path.append(str(ROOT)) # add ROOT to PATH |
|
|
67 |
if platform.system() != 'Windows': |
|
|
68 |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative |
|
|
69 |
|
|
|
70 |
from models.experimental import attempt_load |
|
|
71 |
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel |
|
|
72 |
from utils.dataloaders import LoadImages |
|
|
73 |
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version, |
|
|
74 |
check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save) |
|
|
75 |
from utils.torch_utils import select_device, smart_inference_mode |
|
|
76 |
|
|
|
77 |
MACOS = platform.system() == 'Darwin' # macOS environment |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
class iOSModel(torch.nn.Module): |
|
|
81 |
|
|
|
82 |
def __init__(self, model, im): |
|
|
83 |
super().__init__() |
|
|
84 |
b, c, h, w = im.shape # batch, channel, height, width |
|
|
85 |
self.model = model |
|
|
86 |
self.nc = model.nc # number of classes |
|
|
87 |
if w == h: |
|
|
88 |
self.normalize = 1. / w |
|
|
89 |
else: |
|
|
90 |
self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]) # broadcast (slower, smaller) |
|
|
91 |
# np = model(im)[0].shape[1] # number of points |
|
|
92 |
# self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4) # explicit (faster, larger) |
|
|
93 |
|
|
|
94 |
def forward(self, x): |
|
|
95 |
xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1) |
|
|
96 |
return cls * conf, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4) |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
def export_formats(): |
|
|
100 |
# YOLOv5 export formats |
|
|
101 |
x = [ |
|
|
102 |
['PyTorch', '-', '.pt', True, True], |
|
|
103 |
['TorchScript', 'torchscript', '.torchscript', True, True], |
|
|
104 |
['ONNX', 'onnx', '.onnx', True, True], |
|
|
105 |
['OpenVINO', 'openvino', '_openvino_model', True, False], |
|
|
106 |
['TensorRT', 'engine', '.engine', False, True], |
|
|
107 |
['CoreML', 'coreml', '.mlmodel', True, False], |
|
|
108 |
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True], |
|
|
109 |
['TensorFlow GraphDef', 'pb', '.pb', True, True], |
|
|
110 |
['TensorFlow Lite', 'tflite', '.tflite', True, False], |
|
|
111 |
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False], |
|
|
112 |
['TensorFlow.js', 'tfjs', '_web_model', False, False], |
|
|
113 |
['PaddlePaddle', 'paddle', '_paddle_model', True, True], ] |
|
|
114 |
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU']) |
|
|
115 |
|
|
|
116 |
|
|
|
117 |
def try_export(inner_func): |
|
|
118 |
# YOLOv5 export decorator, i..e @try_export |
|
|
119 |
inner_args = get_default_args(inner_func) |
|
|
120 |
|
|
|
121 |
def outer_func(*args, **kwargs): |
|
|
122 |
prefix = inner_args['prefix'] |
|
|
123 |
try: |
|
|
124 |
with Profile() as dt: |
|
|
125 |
f, model = inner_func(*args, **kwargs) |
|
|
126 |
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)') |
|
|
127 |
return f, model |
|
|
128 |
except Exception as e: |
|
|
129 |
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}') |
|
|
130 |
return None, None |
|
|
131 |
|
|
|
132 |
return outer_func |
|
|
133 |
|
|
|
134 |
|
|
|
135 |
@try_export |
|
|
136 |
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): |
|
|
137 |
# YOLOv5 TorchScript model export |
|
|
138 |
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') |
|
|
139 |
f = file.with_suffix('.torchscript') |
|
|
140 |
|
|
|
141 |
ts = torch.jit.trace(model, im, strict=False) |
|
|
142 |
d = {'shape': im.shape, 'stride': int(max(model.stride)), 'names': model.names} |
|
|
143 |
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap() |
|
|
144 |
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html |
|
|
145 |
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) |
|
|
146 |
else: |
|
|
147 |
ts.save(str(f), _extra_files=extra_files) |
|
|
148 |
return f, None |
|
|
149 |
|
|
|
150 |
|
|
|
151 |
@try_export |
|
|
152 |
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')): |
|
|
153 |
# YOLOv5 ONNX export |
|
|
154 |
check_requirements('onnx>=1.12.0') |
|
|
155 |
import onnx |
|
|
156 |
|
|
|
157 |
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') |
|
|
158 |
f = str(file.with_suffix('.onnx')) |
|
|
159 |
|
|
|
160 |
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0'] |
|
|
161 |
if dynamic: |
|
|
162 |
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640) |
|
|
163 |
if isinstance(model, SegmentationModel): |
|
|
164 |
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) |
|
|
165 |
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160) |
|
|
166 |
elif isinstance(model, DetectionModel): |
|
|
167 |
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) |
|
|
168 |
|
|
|
169 |
torch.onnx.export( |
|
|
170 |
model.cpu() if dynamic else model, # --dynamic only compatible with cpu |
|
|
171 |
im.cpu() if dynamic else im, |
|
|
172 |
f, |
|
|
173 |
verbose=False, |
|
|
174 |
opset_version=opset, |
|
|
175 |
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False |
|
|
176 |
input_names=['images'], |
|
|
177 |
output_names=output_names, |
|
|
178 |
dynamic_axes=dynamic or None) |
|
|
179 |
|
|
|
180 |
# Checks |
|
|
181 |
model_onnx = onnx.load(f) # load onnx model |
|
|
182 |
onnx.checker.check_model(model_onnx) # check onnx model |
|
|
183 |
|
|
|
184 |
# Metadata |
|
|
185 |
d = {'stride': int(max(model.stride)), 'names': model.names} |
|
|
186 |
for k, v in d.items(): |
|
|
187 |
meta = model_onnx.metadata_props.add() |
|
|
188 |
meta.key, meta.value = k, str(v) |
|
|
189 |
onnx.save(model_onnx, f) |
|
|
190 |
|
|
|
191 |
# Simplify |
|
|
192 |
if simplify: |
|
|
193 |
try: |
|
|
194 |
cuda = torch.cuda.is_available() |
|
|
195 |
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1')) |
|
|
196 |
import onnxsim |
|
|
197 |
|
|
|
198 |
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') |
|
|
199 |
model_onnx, check = onnxsim.simplify(model_onnx) |
|
|
200 |
assert check, 'assert check failed' |
|
|
201 |
onnx.save(model_onnx, f) |
|
|
202 |
except Exception as e: |
|
|
203 |
LOGGER.info(f'{prefix} simplifier failure: {e}') |
|
|
204 |
return f, model_onnx |
|
|
205 |
|
|
|
206 |
|
|
|
207 |
@try_export |
|
|
208 |
def export_openvino(file, metadata, half, int8, data, prefix=colorstr('OpenVINO:')): |
|
|
209 |
# YOLOv5 OpenVINO export |
|
|
210 |
check_requirements('openvino-dev>=2023.0') # requires openvino-dev: https://pypi.org/project/openvino-dev/ |
|
|
211 |
import openvino.runtime as ov # noqa |
|
|
212 |
from openvino.tools import mo # noqa |
|
|
213 |
|
|
|
214 |
LOGGER.info(f'\n{prefix} starting export with openvino {ov.__version__}...') |
|
|
215 |
f = str(file).replace(file.suffix, f'_openvino_model{os.sep}') |
|
|
216 |
f_onnx = file.with_suffix('.onnx') |
|
|
217 |
f_ov = str(Path(f) / file.with_suffix('.xml').name) |
|
|
218 |
if int8: |
|
|
219 |
check_requirements('nncf>=2.4.0') # requires at least version 2.4.0 to use the post-training quantization |
|
|
220 |
import nncf |
|
|
221 |
import numpy as np |
|
|
222 |
from openvino.runtime import Core |
|
|
223 |
|
|
|
224 |
from utils.dataloaders import create_dataloader |
|
|
225 |
core = Core() |
|
|
226 |
onnx_model = core.read_model(f_onnx) # export |
|
|
227 |
|
|
|
228 |
def prepare_input_tensor(image: np.ndarray): |
|
|
229 |
input_tensor = image.astype(np.float32) # uint8 to fp16/32 |
|
|
230 |
input_tensor /= 255.0 # 0 - 255 to 0.0 - 1.0 |
|
|
231 |
|
|
|
232 |
if input_tensor.ndim == 3: |
|
|
233 |
input_tensor = np.expand_dims(input_tensor, 0) |
|
|
234 |
return input_tensor |
|
|
235 |
|
|
|
236 |
def gen_dataloader(yaml_path, task='train', imgsz=640, workers=4): |
|
|
237 |
data_yaml = check_yaml(yaml_path) |
|
|
238 |
data = check_dataset(data_yaml) |
|
|
239 |
dataloader = create_dataloader(data[task], |
|
|
240 |
imgsz=imgsz, |
|
|
241 |
batch_size=1, |
|
|
242 |
stride=32, |
|
|
243 |
pad=0.5, |
|
|
244 |
single_cls=False, |
|
|
245 |
rect=False, |
|
|
246 |
workers=workers)[0] |
|
|
247 |
return dataloader |
|
|
248 |
|
|
|
249 |
# noqa: F811 |
|
|
250 |
|
|
|
251 |
def transform_fn(data_item): |
|
|
252 |
""" |
|
|
253 |
Quantization transform function. Extracts and preprocess input data from dataloader item for quantization. |
|
|
254 |
Parameters: |
|
|
255 |
data_item: Tuple with data item produced by DataLoader during iteration |
|
|
256 |
Returns: |
|
|
257 |
input_tensor: Input data for quantization |
|
|
258 |
""" |
|
|
259 |
img = data_item[0].numpy() |
|
|
260 |
input_tensor = prepare_input_tensor(img) |
|
|
261 |
return input_tensor |
|
|
262 |
|
|
|
263 |
ds = gen_dataloader(data) |
|
|
264 |
quantization_dataset = nncf.Dataset(ds, transform_fn) |
|
|
265 |
ov_model = nncf.quantize(onnx_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED) |
|
|
266 |
else: |
|
|
267 |
ov_model = mo.convert_model(f_onnx, model_name=file.stem, framework='onnx', compress_to_fp16=half) # export |
|
|
268 |
|
|
|
269 |
ov.serialize(ov_model, f_ov) # save |
|
|
270 |
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml |
|
|
271 |
return f, None |
|
|
272 |
|
|
|
273 |
|
|
|
274 |
@try_export |
|
|
275 |
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')): |
|
|
276 |
# YOLOv5 Paddle export |
|
|
277 |
check_requirements(('paddlepaddle', 'x2paddle')) |
|
|
278 |
import x2paddle |
|
|
279 |
from x2paddle.convert import pytorch2paddle |
|
|
280 |
|
|
|
281 |
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...') |
|
|
282 |
f = str(file).replace('.pt', f'_paddle_model{os.sep}') |
|
|
283 |
|
|
|
284 |
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export |
|
|
285 |
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml |
|
|
286 |
return f, None |
|
|
287 |
|
|
|
288 |
|
|
|
289 |
@try_export |
|
|
290 |
def export_coreml(model, im, file, int8, half, nms, prefix=colorstr('CoreML:')): |
|
|
291 |
# YOLOv5 CoreML export |
|
|
292 |
check_requirements('coremltools') |
|
|
293 |
import coremltools as ct |
|
|
294 |
|
|
|
295 |
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') |
|
|
296 |
f = file.with_suffix('.mlmodel') |
|
|
297 |
|
|
|
298 |
if nms: |
|
|
299 |
model = iOSModel(model, im) |
|
|
300 |
ts = torch.jit.trace(model, im, strict=False) # TorchScript model |
|
|
301 |
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) |
|
|
302 |
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None) |
|
|
303 |
if bits < 32: |
|
|
304 |
if MACOS: # quantization only supported on macOS |
|
|
305 |
with warnings.catch_warnings(): |
|
|
306 |
warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress numpy==1.20 float warning |
|
|
307 |
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) |
|
|
308 |
else: |
|
|
309 |
print(f'{prefix} quantization only supported on macOS, skipping...') |
|
|
310 |
ct_model.save(f) |
|
|
311 |
return f, ct_model |
|
|
312 |
|
|
|
313 |
|
|
|
314 |
@try_export |
|
|
315 |
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): |
|
|
316 |
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt |
|
|
317 |
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`' |
|
|
318 |
try: |
|
|
319 |
import tensorrt as trt |
|
|
320 |
except Exception: |
|
|
321 |
if platform.system() == 'Linux': |
|
|
322 |
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') |
|
|
323 |
import tensorrt as trt |
|
|
324 |
|
|
|
325 |
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012 |
|
|
326 |
grid = model.model[-1].anchor_grid |
|
|
327 |
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] |
|
|
328 |
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 |
|
|
329 |
model.model[-1].anchor_grid = grid |
|
|
330 |
else: # TensorRT >= 8 |
|
|
331 |
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0 |
|
|
332 |
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 |
|
|
333 |
onnx = file.with_suffix('.onnx') |
|
|
334 |
|
|
|
335 |
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') |
|
|
336 |
assert onnx.exists(), f'failed to export ONNX file: {onnx}' |
|
|
337 |
f = file.with_suffix('.engine') # TensorRT engine file |
|
|
338 |
logger = trt.Logger(trt.Logger.INFO) |
|
|
339 |
if verbose: |
|
|
340 |
logger.min_severity = trt.Logger.Severity.VERBOSE |
|
|
341 |
|
|
|
342 |
builder = trt.Builder(logger) |
|
|
343 |
config = builder.create_builder_config() |
|
|
344 |
config.max_workspace_size = workspace * 1 << 30 |
|
|
345 |
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice |
|
|
346 |
|
|
|
347 |
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) |
|
|
348 |
network = builder.create_network(flag) |
|
|
349 |
parser = trt.OnnxParser(network, logger) |
|
|
350 |
if not parser.parse_from_file(str(onnx)): |
|
|
351 |
raise RuntimeError(f'failed to load ONNX file: {onnx}') |
|
|
352 |
|
|
|
353 |
inputs = [network.get_input(i) for i in range(network.num_inputs)] |
|
|
354 |
outputs = [network.get_output(i) for i in range(network.num_outputs)] |
|
|
355 |
for inp in inputs: |
|
|
356 |
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}') |
|
|
357 |
for out in outputs: |
|
|
358 |
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') |
|
|
359 |
|
|
|
360 |
if dynamic: |
|
|
361 |
if im.shape[0] <= 1: |
|
|
362 |
LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument') |
|
|
363 |
profile = builder.create_optimization_profile() |
|
|
364 |
for inp in inputs: |
|
|
365 |
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape) |
|
|
366 |
config.add_optimization_profile(profile) |
|
|
367 |
|
|
|
368 |
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}') |
|
|
369 |
if builder.platform_has_fast_fp16 and half: |
|
|
370 |
config.set_flag(trt.BuilderFlag.FP16) |
|
|
371 |
with builder.build_engine(network, config) as engine, open(f, 'wb') as t: |
|
|
372 |
t.write(engine.serialize()) |
|
|
373 |
return f, None |
|
|
374 |
|
|
|
375 |
|
|
|
376 |
@try_export |
|
|
377 |
def export_saved_model(model, |
|
|
378 |
im, |
|
|
379 |
file, |
|
|
380 |
dynamic, |
|
|
381 |
tf_nms=False, |
|
|
382 |
agnostic_nms=False, |
|
|
383 |
topk_per_class=100, |
|
|
384 |
topk_all=100, |
|
|
385 |
iou_thres=0.45, |
|
|
386 |
conf_thres=0.25, |
|
|
387 |
keras=False, |
|
|
388 |
prefix=colorstr('TensorFlow SavedModel:')): |
|
|
389 |
# YOLOv5 TensorFlow SavedModel export |
|
|
390 |
try: |
|
|
391 |
import tensorflow as tf |
|
|
392 |
except Exception: |
|
|
393 |
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}") |
|
|
394 |
import tensorflow as tf |
|
|
395 |
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 |
|
|
396 |
|
|
|
397 |
from models.tf import TFModel |
|
|
398 |
|
|
|
399 |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') |
|
|
400 |
if tf.__version__ > '2.13.1': |
|
|
401 |
helper_url = 'https://github.com/ultralytics/yolov5/issues/12489' |
|
|
402 |
LOGGER.info( |
|
|
403 |
f'WARNING ⚠️ using Tensorflow {tf.__version__} > 2.13.1 might cause issue when exporting the model to tflite {helper_url}' |
|
|
404 |
) # handling issue https://github.com/ultralytics/yolov5/issues/12489 |
|
|
405 |
f = str(file).replace('.pt', '_saved_model') |
|
|
406 |
batch_size, ch, *imgsz = list(im.shape) # BCHW |
|
|
407 |
|
|
|
408 |
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) |
|
|
409 |
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow |
|
|
410 |
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) |
|
|
411 |
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size) |
|
|
412 |
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) |
|
|
413 |
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) |
|
|
414 |
keras_model.trainable = False |
|
|
415 |
keras_model.summary() |
|
|
416 |
if keras: |
|
|
417 |
keras_model.save(f, save_format='tf') |
|
|
418 |
else: |
|
|
419 |
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) |
|
|
420 |
m = tf.function(lambda x: keras_model(x)) # full model |
|
|
421 |
m = m.get_concrete_function(spec) |
|
|
422 |
frozen_func = convert_variables_to_constants_v2(m) |
|
|
423 |
tfm = tf.Module() |
|
|
424 |
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec]) |
|
|
425 |
tfm.__call__(im) |
|
|
426 |
tf.saved_model.save(tfm, |
|
|
427 |
f, |
|
|
428 |
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version( |
|
|
429 |
tf.__version__, '2.6') else tf.saved_model.SaveOptions()) |
|
|
430 |
return f, keras_model |
|
|
431 |
|
|
|
432 |
|
|
|
433 |
@try_export |
|
|
434 |
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): |
|
|
435 |
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow |
|
|
436 |
import tensorflow as tf |
|
|
437 |
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 |
|
|
438 |
|
|
|
439 |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') |
|
|
440 |
f = file.with_suffix('.pb') |
|
|
441 |
|
|
|
442 |
m = tf.function(lambda x: keras_model(x)) # full model |
|
|
443 |
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) |
|
|
444 |
frozen_func = convert_variables_to_constants_v2(m) |
|
|
445 |
frozen_func.graph.as_graph_def() |
|
|
446 |
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) |
|
|
447 |
return f, None |
|
|
448 |
|
|
|
449 |
|
|
|
450 |
@try_export |
|
|
451 |
def export_tflite(keras_model, im, file, int8, per_tensor, data, nms, agnostic_nms, |
|
|
452 |
prefix=colorstr('TensorFlow Lite:')): |
|
|
453 |
# YOLOv5 TensorFlow Lite export |
|
|
454 |
import tensorflow as tf |
|
|
455 |
|
|
|
456 |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') |
|
|
457 |
batch_size, ch, *imgsz = list(im.shape) # BCHW |
|
|
458 |
f = str(file).replace('.pt', '-fp16.tflite') |
|
|
459 |
|
|
|
460 |
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) |
|
|
461 |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] |
|
|
462 |
converter.target_spec.supported_types = [tf.float16] |
|
|
463 |
converter.optimizations = [tf.lite.Optimize.DEFAULT] |
|
|
464 |
if int8: |
|
|
465 |
from models.tf import representative_dataset_gen |
|
|
466 |
dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False) |
|
|
467 |
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100) |
|
|
468 |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] |
|
|
469 |
converter.target_spec.supported_types = [] |
|
|
470 |
converter.inference_input_type = tf.uint8 # or tf.int8 |
|
|
471 |
converter.inference_output_type = tf.uint8 # or tf.int8 |
|
|
472 |
converter.experimental_new_quantizer = True |
|
|
473 |
if per_tensor: |
|
|
474 |
converter._experimental_disable_per_channel = True |
|
|
475 |
f = str(file).replace('.pt', '-int8.tflite') |
|
|
476 |
if nms or agnostic_nms: |
|
|
477 |
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS) |
|
|
478 |
|
|
|
479 |
tflite_model = converter.convert() |
|
|
480 |
open(f, 'wb').write(tflite_model) |
|
|
481 |
return f, None |
|
|
482 |
|
|
|
483 |
|
|
|
484 |
@try_export |
|
|
485 |
def export_edgetpu(file, prefix=colorstr('Edge TPU:')): |
|
|
486 |
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ |
|
|
487 |
cmd = 'edgetpu_compiler --version' |
|
|
488 |
help_url = 'https://coral.ai/docs/edgetpu/compiler/' |
|
|
489 |
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' |
|
|
490 |
if subprocess.run(f'{cmd} > /dev/null 2>&1', shell=True).returncode != 0: |
|
|
491 |
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') |
|
|
492 |
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system |
|
|
493 |
for c in ( |
|
|
494 |
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', |
|
|
495 |
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', |
|
|
496 |
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'): |
|
|
497 |
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) |
|
|
498 |
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] |
|
|
499 |
|
|
|
500 |
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') |
|
|
501 |
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model |
|
|
502 |
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model |
|
|
503 |
|
|
|
504 |
subprocess.run([ |
|
|
505 |
'edgetpu_compiler', |
|
|
506 |
'-s', |
|
|
507 |
'-d', |
|
|
508 |
'-k', |
|
|
509 |
'10', |
|
|
510 |
'--out_dir', |
|
|
511 |
str(file.parent), |
|
|
512 |
f_tfl, ], check=True) |
|
|
513 |
return f, None |
|
|
514 |
|
|
|
515 |
|
|
|
516 |
@try_export |
|
|
517 |
def export_tfjs(file, int8, prefix=colorstr('TensorFlow.js:')): |
|
|
518 |
# YOLOv5 TensorFlow.js export |
|
|
519 |
check_requirements('tensorflowjs') |
|
|
520 |
import tensorflowjs as tfjs |
|
|
521 |
|
|
|
522 |
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') |
|
|
523 |
f = str(file).replace('.pt', '_web_model') # js dir |
|
|
524 |
f_pb = file.with_suffix('.pb') # *.pb path |
|
|
525 |
f_json = f'{f}/model.json' # *.json path |
|
|
526 |
|
|
|
527 |
args = [ |
|
|
528 |
'tensorflowjs_converter', |
|
|
529 |
'--input_format=tf_frozen_model', |
|
|
530 |
'--quantize_uint8' if int8 else '', |
|
|
531 |
'--output_node_names=Identity,Identity_1,Identity_2,Identity_3', |
|
|
532 |
str(f_pb), |
|
|
533 |
str(f), ] |
|
|
534 |
subprocess.run([arg for arg in args if arg], check=True) |
|
|
535 |
|
|
|
536 |
json = Path(f_json).read_text() |
|
|
537 |
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order |
|
|
538 |
subst = re.sub( |
|
|
539 |
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' |
|
|
540 |
r'"Identity.?.?": {"name": "Identity.?.?"}, ' |
|
|
541 |
r'"Identity.?.?": {"name": "Identity.?.?"}, ' |
|
|
542 |
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' |
|
|
543 |
r'"Identity_1": {"name": "Identity_1"}, ' |
|
|
544 |
r'"Identity_2": {"name": "Identity_2"}, ' |
|
|
545 |
r'"Identity_3": {"name": "Identity_3"}}}', json) |
|
|
546 |
j.write(subst) |
|
|
547 |
return f, None |
|
|
548 |
|
|
|
549 |
|
|
|
550 |
def add_tflite_metadata(file, metadata, num_outputs): |
|
|
551 |
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata |
|
|
552 |
with contextlib.suppress(ImportError): |
|
|
553 |
# check_requirements('tflite_support') |
|
|
554 |
from tflite_support import flatbuffers |
|
|
555 |
from tflite_support import metadata as _metadata |
|
|
556 |
from tflite_support import metadata_schema_py_generated as _metadata_fb |
|
|
557 |
|
|
|
558 |
tmp_file = Path('/tmp/meta.txt') |
|
|
559 |
with open(tmp_file, 'w') as meta_f: |
|
|
560 |
meta_f.write(str(metadata)) |
|
|
561 |
|
|
|
562 |
model_meta = _metadata_fb.ModelMetadataT() |
|
|
563 |
label_file = _metadata_fb.AssociatedFileT() |
|
|
564 |
label_file.name = tmp_file.name |
|
|
565 |
model_meta.associatedFiles = [label_file] |
|
|
566 |
|
|
|
567 |
subgraph = _metadata_fb.SubGraphMetadataT() |
|
|
568 |
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()] |
|
|
569 |
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs |
|
|
570 |
model_meta.subgraphMetadata = [subgraph] |
|
|
571 |
|
|
|
572 |
b = flatbuffers.Builder(0) |
|
|
573 |
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) |
|
|
574 |
metadata_buf = b.Output() |
|
|
575 |
|
|
|
576 |
populator = _metadata.MetadataPopulator.with_model_file(file) |
|
|
577 |
populator.load_metadata_buffer(metadata_buf) |
|
|
578 |
populator.load_associated_files([str(tmp_file)]) |
|
|
579 |
populator.populate() |
|
|
580 |
tmp_file.unlink() |
|
|
581 |
|
|
|
582 |
|
|
|
583 |
def pipeline_coreml(model, im, file, names, y, prefix=colorstr('CoreML Pipeline:')): |
|
|
584 |
# YOLOv5 CoreML pipeline |
|
|
585 |
import coremltools as ct |
|
|
586 |
from PIL import Image |
|
|
587 |
|
|
|
588 |
print(f'{prefix} starting pipeline with coremltools {ct.__version__}...') |
|
|
589 |
batch_size, ch, h, w = list(im.shape) # BCHW |
|
|
590 |
t = time.time() |
|
|
591 |
|
|
|
592 |
# YOLOv5 Output shapes |
|
|
593 |
spec = model.get_spec() |
|
|
594 |
out0, out1 = iter(spec.description.output) |
|
|
595 |
if platform.system() == 'Darwin': |
|
|
596 |
img = Image.new('RGB', (w, h)) # img(192 width, 320 height) |
|
|
597 |
# img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection |
|
|
598 |
out = model.predict({'image': img}) |
|
|
599 |
out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape |
|
|
600 |
else: # linux and windows can not run model.predict(), get sizes from pytorch output y |
|
|
601 |
s = tuple(y[0].shape) |
|
|
602 |
out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4) # (3780, 80), (3780, 4) |
|
|
603 |
|
|
|
604 |
# Checks |
|
|
605 |
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height |
|
|
606 |
na, nc = out0_shape |
|
|
607 |
# na, nc = out0.type.multiArrayType.shape # number anchors, classes |
|
|
608 |
assert len(names) == nc, f'{len(names)} names found for nc={nc}' # check |
|
|
609 |
|
|
|
610 |
# Define output shapes (missing) |
|
|
611 |
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80) |
|
|
612 |
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4) |
|
|
613 |
# spec.neuralNetwork.preprocessing[0].featureName = '0' |
|
|
614 |
|
|
|
615 |
# Flexible input shapes |
|
|
616 |
# from coremltools.models.neural_network import flexible_shape_utils |
|
|
617 |
# s = [] # shapes |
|
|
618 |
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192)) |
|
|
619 |
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width) |
|
|
620 |
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s) |
|
|
621 |
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges |
|
|
622 |
# r.add_height_range((192, 640)) |
|
|
623 |
# r.add_width_range((192, 640)) |
|
|
624 |
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r) |
|
|
625 |
|
|
|
626 |
# Print |
|
|
627 |
print(spec.description) |
|
|
628 |
|
|
|
629 |
# Model from spec |
|
|
630 |
model = ct.models.MLModel(spec) |
|
|
631 |
|
|
|
632 |
# 3. Create NMS protobuf |
|
|
633 |
nms_spec = ct.proto.Model_pb2.Model() |
|
|
634 |
nms_spec.specificationVersion = 5 |
|
|
635 |
for i in range(2): |
|
|
636 |
decoder_output = model._spec.description.output[i].SerializeToString() |
|
|
637 |
nms_spec.description.input.add() |
|
|
638 |
nms_spec.description.input[i].ParseFromString(decoder_output) |
|
|
639 |
nms_spec.description.output.add() |
|
|
640 |
nms_spec.description.output[i].ParseFromString(decoder_output) |
|
|
641 |
|
|
|
642 |
nms_spec.description.output[0].name = 'confidence' |
|
|
643 |
nms_spec.description.output[1].name = 'coordinates' |
|
|
644 |
|
|
|
645 |
output_sizes = [nc, 4] |
|
|
646 |
for i in range(2): |
|
|
647 |
ma_type = nms_spec.description.output[i].type.multiArrayType |
|
|
648 |
ma_type.shapeRange.sizeRanges.add() |
|
|
649 |
ma_type.shapeRange.sizeRanges[0].lowerBound = 0 |
|
|
650 |
ma_type.shapeRange.sizeRanges[0].upperBound = -1 |
|
|
651 |
ma_type.shapeRange.sizeRanges.add() |
|
|
652 |
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i] |
|
|
653 |
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i] |
|
|
654 |
del ma_type.shape[:] |
|
|
655 |
|
|
|
656 |
nms = nms_spec.nonMaximumSuppression |
|
|
657 |
nms.confidenceInputFeatureName = out0.name # 1x507x80 |
|
|
658 |
nms.coordinatesInputFeatureName = out1.name # 1x507x4 |
|
|
659 |
nms.confidenceOutputFeatureName = 'confidence' |
|
|
660 |
nms.coordinatesOutputFeatureName = 'coordinates' |
|
|
661 |
nms.iouThresholdInputFeatureName = 'iouThreshold' |
|
|
662 |
nms.confidenceThresholdInputFeatureName = 'confidenceThreshold' |
|
|
663 |
nms.iouThreshold = 0.45 |
|
|
664 |
nms.confidenceThreshold = 0.25 |
|
|
665 |
nms.pickTop.perClass = True |
|
|
666 |
nms.stringClassLabels.vector.extend(names.values()) |
|
|
667 |
nms_model = ct.models.MLModel(nms_spec) |
|
|
668 |
|
|
|
669 |
# 4. Pipeline models together |
|
|
670 |
pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)), |
|
|
671 |
('iouThreshold', ct.models.datatypes.Double()), |
|
|
672 |
('confidenceThreshold', ct.models.datatypes.Double())], |
|
|
673 |
output_features=['confidence', 'coordinates']) |
|
|
674 |
pipeline.add_model(model) |
|
|
675 |
pipeline.add_model(nms_model) |
|
|
676 |
|
|
|
677 |
# Correct datatypes |
|
|
678 |
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString()) |
|
|
679 |
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString()) |
|
|
680 |
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString()) |
|
|
681 |
|
|
|
682 |
# Update metadata |
|
|
683 |
pipeline.spec.specificationVersion = 5 |
|
|
684 |
pipeline.spec.description.metadata.versionString = 'https://github.com/ultralytics/yolov5' |
|
|
685 |
pipeline.spec.description.metadata.shortDescription = 'https://github.com/ultralytics/yolov5' |
|
|
686 |
pipeline.spec.description.metadata.author = 'glenn.jocher@ultralytics.com' |
|
|
687 |
pipeline.spec.description.metadata.license = 'https://github.com/ultralytics/yolov5/blob/master/LICENSE' |
|
|
688 |
pipeline.spec.description.metadata.userDefined.update({ |
|
|
689 |
'classes': ','.join(names.values()), |
|
|
690 |
'iou_threshold': str(nms.iouThreshold), |
|
|
691 |
'confidence_threshold': str(nms.confidenceThreshold)}) |
|
|
692 |
|
|
|
693 |
# Save the model |
|
|
694 |
f = file.with_suffix('.mlmodel') # filename |
|
|
695 |
model = ct.models.MLModel(pipeline.spec) |
|
|
696 |
model.input_description['image'] = 'Input image' |
|
|
697 |
model.input_description['iouThreshold'] = f'(optional) IOU Threshold override (default: {nms.iouThreshold})' |
|
|
698 |
model.input_description['confidenceThreshold'] = \ |
|
|
699 |
f'(optional) Confidence Threshold override (default: {nms.confidenceThreshold})' |
|
|
700 |
model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")' |
|
|
701 |
model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)' |
|
|
702 |
model.save(f) # pipelined |
|
|
703 |
print(f'{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)') |
|
|
704 |
|
|
|
705 |
|
|
|
706 |
@smart_inference_mode() |
|
|
707 |
def run( |
|
|
708 |
data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' |
|
|
709 |
weights=ROOT / 'yolov5s.pt', # weights path |
|
|
710 |
imgsz=(640, 640), # image (height, width) |
|
|
711 |
batch_size=1, # batch size |
|
|
712 |
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu |
|
|
713 |
include=('torchscript', 'onnx'), # include formats |
|
|
714 |
half=False, # FP16 half-precision export |
|
|
715 |
inplace=False, # set YOLOv5 Detect() inplace=True |
|
|
716 |
keras=False, # use Keras |
|
|
717 |
optimize=False, # TorchScript: optimize for mobile |
|
|
718 |
int8=False, # CoreML/TF INT8 quantization |
|
|
719 |
per_tensor=False, # TF per tensor quantization |
|
|
720 |
dynamic=False, # ONNX/TF/TensorRT: dynamic axes |
|
|
721 |
simplify=False, # ONNX: simplify model |
|
|
722 |
opset=12, # ONNX: opset version |
|
|
723 |
verbose=False, # TensorRT: verbose log |
|
|
724 |
workspace=4, # TensorRT: workspace size (GB) |
|
|
725 |
nms=False, # TF: add NMS to model |
|
|
726 |
agnostic_nms=False, # TF: add agnostic NMS to model |
|
|
727 |
topk_per_class=100, # TF.js NMS: topk per class to keep |
|
|
728 |
topk_all=100, # TF.js NMS: topk for all classes to keep |
|
|
729 |
iou_thres=0.45, # TF.js NMS: IoU threshold |
|
|
730 |
conf_thres=0.25, # TF.js NMS: confidence threshold |
|
|
731 |
): |
|
|
732 |
t = time.time() |
|
|
733 |
include = [x.lower() for x in include] # to lowercase |
|
|
734 |
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments |
|
|
735 |
flags = [x in include for x in fmts] |
|
|
736 |
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}' |
|
|
737 |
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans |
|
|
738 |
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights |
|
|
739 |
|
|
|
740 |
# Load PyTorch model |
|
|
741 |
device = select_device(device) |
|
|
742 |
if half: |
|
|
743 |
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0' |
|
|
744 |
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both' |
|
|
745 |
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model |
|
|
746 |
|
|
|
747 |
# Checks |
|
|
748 |
imgsz *= 2 if len(imgsz) == 1 else 1 # expand |
|
|
749 |
if optimize: |
|
|
750 |
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu' |
|
|
751 |
|
|
|
752 |
# Input |
|
|
753 |
gs = int(max(model.stride)) # grid size (max stride) |
|
|
754 |
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples |
|
|
755 |
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection |
|
|
756 |
|
|
|
757 |
# Update model |
|
|
758 |
model.eval() |
|
|
759 |
for k, m in model.named_modules(): |
|
|
760 |
if isinstance(m, Detect): |
|
|
761 |
m.inplace = inplace |
|
|
762 |
m.dynamic = dynamic |
|
|
763 |
m.export = True |
|
|
764 |
|
|
|
765 |
for _ in range(2): |
|
|
766 |
y = model(im) # dry runs |
|
|
767 |
if half and not coreml: |
|
|
768 |
im, model = im.half(), model.half() # to FP16 |
|
|
769 |
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape |
|
|
770 |
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata |
|
|
771 |
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") |
|
|
772 |
|
|
|
773 |
# Exports |
|
|
774 |
f = [''] * len(fmts) # exported filenames |
|
|
775 |
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning |
|
|
776 |
if jit: # TorchScript |
|
|
777 |
f[0], _ = export_torchscript(model, im, file, optimize) |
|
|
778 |
if engine: # TensorRT required before ONNX |
|
|
779 |
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose) |
|
|
780 |
if onnx or xml: # OpenVINO requires ONNX |
|
|
781 |
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify) |
|
|
782 |
if xml: # OpenVINO |
|
|
783 |
f[3], _ = export_openvino(file, metadata, half, int8, data) |
|
|
784 |
if coreml: # CoreML |
|
|
785 |
f[4], ct_model = export_coreml(model, im, file, int8, half, nms) |
|
|
786 |
if nms: |
|
|
787 |
pipeline_coreml(ct_model, im, file, model.names, y) |
|
|
788 |
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats |
|
|
789 |
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.' |
|
|
790 |
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.' |
|
|
791 |
f[5], s_model = export_saved_model(model.cpu(), |
|
|
792 |
im, |
|
|
793 |
file, |
|
|
794 |
dynamic, |
|
|
795 |
tf_nms=nms or agnostic_nms or tfjs, |
|
|
796 |
agnostic_nms=agnostic_nms or tfjs, |
|
|
797 |
topk_per_class=topk_per_class, |
|
|
798 |
topk_all=topk_all, |
|
|
799 |
iou_thres=iou_thres, |
|
|
800 |
conf_thres=conf_thres, |
|
|
801 |
keras=keras) |
|
|
802 |
if pb or tfjs: # pb prerequisite to tfjs |
|
|
803 |
f[6], _ = export_pb(s_model, file) |
|
|
804 |
if tflite or edgetpu: |
|
|
805 |
f[7], _ = export_tflite(s_model, |
|
|
806 |
im, |
|
|
807 |
file, |
|
|
808 |
int8 or edgetpu, |
|
|
809 |
per_tensor, |
|
|
810 |
data=data, |
|
|
811 |
nms=nms, |
|
|
812 |
agnostic_nms=agnostic_nms) |
|
|
813 |
if edgetpu: |
|
|
814 |
f[8], _ = export_edgetpu(file) |
|
|
815 |
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs)) |
|
|
816 |
if tfjs: |
|
|
817 |
f[9], _ = export_tfjs(file, int8) |
|
|
818 |
if paddle: # PaddlePaddle |
|
|
819 |
f[10], _ = export_paddle(model, im, file, metadata) |
|
|
820 |
|
|
|
821 |
# Finish |
|
|
822 |
f = [str(x) for x in f if x] # filter out '' and None |
|
|
823 |
if any(f): |
|
|
824 |
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type |
|
|
825 |
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel) |
|
|
826 |
dir = Path('segment' if seg else 'classify' if cls else '') |
|
|
827 |
h = '--half' if half else '' # --half FP16 inference arg |
|
|
828 |
s = '# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference' if cls else \ |
|
|
829 |
'# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference' if seg else '' |
|
|
830 |
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)' |
|
|
831 |
f"\nResults saved to {colorstr('bold', file.parent.resolve())}" |
|
|
832 |
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}" |
|
|
833 |
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}" |
|
|
834 |
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}" |
|
|
835 |
f'\nVisualize: https://netron.app') |
|
|
836 |
return f # return list of exported files/dirs |
|
|
837 |
|
|
|
838 |
|
|
|
839 |
def parse_opt(known=False): |
|
|
840 |
parser = argparse.ArgumentParser() |
|
|
841 |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') |
|
|
842 |
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') |
|
|
843 |
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') |
|
|
844 |
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
|
845 |
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
846 |
parser.add_argument('--half', action='store_true', help='FP16 half-precision export') |
|
|
847 |
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') |
|
|
848 |
parser.add_argument('--keras', action='store_true', help='TF: use Keras') |
|
|
849 |
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') |
|
|
850 |
parser.add_argument('--int8', action='store_true', help='CoreML/TF/OpenVINO INT8 quantization') |
|
|
851 |
parser.add_argument('--per-tensor', action='store_true', help='TF per-tensor quantization') |
|
|
852 |
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes') |
|
|
853 |
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') |
|
|
854 |
parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version') |
|
|
855 |
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log') |
|
|
856 |
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)') |
|
|
857 |
parser.add_argument('--nms', action='store_true', help='TF: add NMS to model') |
|
|
858 |
parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model') |
|
|
859 |
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep') |
|
|
860 |
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep') |
|
|
861 |
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold') |
|
|
862 |
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold') |
|
|
863 |
parser.add_argument( |
|
|
864 |
'--include', |
|
|
865 |
nargs='+', |
|
|
866 |
default=['torchscript'], |
|
|
867 |
help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle') |
|
|
868 |
opt = parser.parse_known_args()[0] if known else parser.parse_args() |
|
|
869 |
print_args(vars(opt)) |
|
|
870 |
return opt |
|
|
871 |
|
|
|
872 |
|
|
|
873 |
def main(opt): |
|
|
874 |
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]): |
|
|
875 |
run(**vars(opt)) |
|
|
876 |
|
|
|
877 |
|
|
|
878 |
if __name__ == '__main__': |
|
|
879 |
opt = parse_opt() |
|
|
880 |
main(opt) |