Diff of /export.py [000000] .. [190ca4]

Switch to side-by-side view

--- a
+++ b/export.py
@@ -0,0 +1,880 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
+
+Format                      | `export.py --include`         | Model
+---                         | ---                           | ---
+PyTorch                     | -                             | yolov5s.pt
+TorchScript                 | `torchscript`                 | yolov5s.torchscript
+ONNX                        | `onnx`                        | yolov5s.onnx
+OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
+TensorRT                    | `engine`                      | yolov5s.engine
+CoreML                      | `coreml`                      | yolov5s.mlmodel
+TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
+TensorFlow GraphDef         | `pb`                          | yolov5s.pb
+TensorFlow Lite             | `tflite`                      | yolov5s.tflite
+TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
+TensorFlow.js               | `tfjs`                        | yolov5s_web_model/
+PaddlePaddle                | `paddle`                      | yolov5s_paddle_model/
+
+Requirements:
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU
+
+Usage:
+    $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
+
+Inference:
+    $ python detect.py --weights yolov5s.pt                 # PyTorch
+                                 yolov5s.torchscript        # TorchScript
+                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                 yolov5s_openvino_model     # OpenVINO
+                                 yolov5s.engine             # TensorRT
+                                 yolov5s.mlmodel            # CoreML (macOS-only)
+                                 yolov5s_saved_model        # TensorFlow SavedModel
+                                 yolov5s.pb                 # TensorFlow GraphDef
+                                 yolov5s.tflite             # TensorFlow Lite
+                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
+                                 yolov5s_paddle_model       # PaddlePaddle
+
+TensorFlow.js:
+    $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
+    $ npm install
+    $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
+    $ npm start
+"""
+
+import argparse
+import contextlib
+import json
+import os
+import platform
+import re
+import subprocess
+import sys
+import time
+import warnings
+from pathlib import Path
+
+import pandas as pd
+import torch
+from torch.utils.mobile_optimizer import optimize_for_mobile
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+if platform.system() != 'Windows':
+    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.experimental import attempt_load
+from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
+from utils.dataloaders import LoadImages
+from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
+                           check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
+from utils.torch_utils import select_device, smart_inference_mode
+
+MACOS = platform.system() == 'Darwin'  # macOS environment
+
+
+class iOSModel(torch.nn.Module):
+
+    def __init__(self, model, im):
+        super().__init__()
+        b, c, h, w = im.shape  # batch, channel, height, width
+        self.model = model
+        self.nc = model.nc  # number of classes
+        if w == h:
+            self.normalize = 1. / w
+        else:
+            self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h])  # broadcast (slower, smaller)
+            # np = model(im)[0].shape[1]  # number of points
+            # self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4)  # explicit (faster, larger)
+
+    def forward(self, x):
+        xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1)
+        return cls * conf, xywh * self.normalize  # confidence (3780, 80), coordinates (3780, 4)
+
+
+def export_formats():
+    # YOLOv5 export formats
+    x = [
+        ['PyTorch', '-', '.pt', True, True],
+        ['TorchScript', 'torchscript', '.torchscript', True, True],
+        ['ONNX', 'onnx', '.onnx', True, True],
+        ['OpenVINO', 'openvino', '_openvino_model', True, False],
+        ['TensorRT', 'engine', '.engine', False, True],
+        ['CoreML', 'coreml', '.mlmodel', True, False],
+        ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
+        ['TensorFlow GraphDef', 'pb', '.pb', True, True],
+        ['TensorFlow Lite', 'tflite', '.tflite', True, False],
+        ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
+        ['TensorFlow.js', 'tfjs', '_web_model', False, False],
+        ['PaddlePaddle', 'paddle', '_paddle_model', True, True], ]
+    return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
+
+
+def try_export(inner_func):
+    # YOLOv5 export decorator, i..e @try_export
+    inner_args = get_default_args(inner_func)
+
+    def outer_func(*args, **kwargs):
+        prefix = inner_args['prefix']
+        try:
+            with Profile() as dt:
+                f, model = inner_func(*args, **kwargs)
+            LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
+            return f, model
+        except Exception as e:
+            LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
+            return None, None
+
+    return outer_func
+
+
+@try_export
+def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
+    # YOLOv5 TorchScript model export
+    LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
+    f = file.with_suffix('.torchscript')
+
+    ts = torch.jit.trace(model, im, strict=False)
+    d = {'shape': im.shape, 'stride': int(max(model.stride)), 'names': model.names}
+    extra_files = {'config.txt': json.dumps(d)}  # torch._C.ExtraFilesMap()
+    if optimize:  # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
+        optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
+    else:
+        ts.save(str(f), _extra_files=extra_files)
+    return f, None
+
+
+@try_export
+def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
+    # YOLOv5 ONNX export
+    check_requirements('onnx>=1.12.0')
+    import onnx
+
+    LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
+    f = str(file.with_suffix('.onnx'))
+
+    output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
+    if dynamic:
+        dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}}  # shape(1,3,640,640)
+        if isinstance(model, SegmentationModel):
+            dynamic['output0'] = {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
+            dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'}  # shape(1,32,160,160)
+        elif isinstance(model, DetectionModel):
+            dynamic['output0'] = {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
+
+    torch.onnx.export(
+        model.cpu() if dynamic else model,  # --dynamic only compatible with cpu
+        im.cpu() if dynamic else im,
+        f,
+        verbose=False,
+        opset_version=opset,
+        do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
+        input_names=['images'],
+        output_names=output_names,
+        dynamic_axes=dynamic or None)
+
+    # Checks
+    model_onnx = onnx.load(f)  # load onnx model
+    onnx.checker.check_model(model_onnx)  # check onnx model
+
+    # Metadata
+    d = {'stride': int(max(model.stride)), 'names': model.names}
+    for k, v in d.items():
+        meta = model_onnx.metadata_props.add()
+        meta.key, meta.value = k, str(v)
+    onnx.save(model_onnx, f)
+
+    # Simplify
+    if simplify:
+        try:
+            cuda = torch.cuda.is_available()
+            check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
+            import onnxsim
+
+            LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
+            model_onnx, check = onnxsim.simplify(model_onnx)
+            assert check, 'assert check failed'
+            onnx.save(model_onnx, f)
+        except Exception as e:
+            LOGGER.info(f'{prefix} simplifier failure: {e}')
+    return f, model_onnx
+
+
+@try_export
+def export_openvino(file, metadata, half, int8, data, prefix=colorstr('OpenVINO:')):
+    # YOLOv5 OpenVINO export
+    check_requirements('openvino-dev>=2023.0')  # requires openvino-dev: https://pypi.org/project/openvino-dev/
+    import openvino.runtime as ov  # noqa
+    from openvino.tools import mo  # noqa
+
+    LOGGER.info(f'\n{prefix} starting export with openvino {ov.__version__}...')
+    f = str(file).replace(file.suffix, f'_openvino_model{os.sep}')
+    f_onnx = file.with_suffix('.onnx')
+    f_ov = str(Path(f) / file.with_suffix('.xml').name)
+    if int8:
+        check_requirements('nncf>=2.4.0')  # requires at least version 2.4.0 to use the post-training quantization
+        import nncf
+        import numpy as np
+        from openvino.runtime import Core
+
+        from utils.dataloaders import create_dataloader
+        core = Core()
+        onnx_model = core.read_model(f_onnx)  # export
+
+        def prepare_input_tensor(image: np.ndarray):
+            input_tensor = image.astype(np.float32)  # uint8 to fp16/32
+            input_tensor /= 255.0  # 0 - 255 to 0.0 - 1.0
+
+            if input_tensor.ndim == 3:
+                input_tensor = np.expand_dims(input_tensor, 0)
+            return input_tensor
+
+        def gen_dataloader(yaml_path, task='train', imgsz=640, workers=4):
+            data_yaml = check_yaml(yaml_path)
+            data = check_dataset(data_yaml)
+            dataloader = create_dataloader(data[task],
+                                           imgsz=imgsz,
+                                           batch_size=1,
+                                           stride=32,
+                                           pad=0.5,
+                                           single_cls=False,
+                                           rect=False,
+                                           workers=workers)[0]
+            return dataloader
+
+        # noqa: F811
+
+        def transform_fn(data_item):
+            """
+            Quantization transform function. Extracts and preprocess input data from dataloader item for quantization.
+            Parameters:
+               data_item: Tuple with data item produced by DataLoader during iteration
+            Returns:
+                input_tensor: Input data for quantization
+            """
+            img = data_item[0].numpy()
+            input_tensor = prepare_input_tensor(img)
+            return input_tensor
+
+        ds = gen_dataloader(data)
+        quantization_dataset = nncf.Dataset(ds, transform_fn)
+        ov_model = nncf.quantize(onnx_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED)
+    else:
+        ov_model = mo.convert_model(f_onnx, model_name=file.stem, framework='onnx', compress_to_fp16=half)  # export
+
+    ov.serialize(ov_model, f_ov)  # save
+    yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata)  # add metadata.yaml
+    return f, None
+
+
+@try_export
+def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
+    # YOLOv5 Paddle export
+    check_requirements(('paddlepaddle', 'x2paddle'))
+    import x2paddle
+    from x2paddle.convert import pytorch2paddle
+
+    LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
+    f = str(file).replace('.pt', f'_paddle_model{os.sep}')
+
+    pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im])  # export
+    yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata)  # add metadata.yaml
+    return f, None
+
+
+@try_export
+def export_coreml(model, im, file, int8, half, nms, prefix=colorstr('CoreML:')):
+    # YOLOv5 CoreML export
+    check_requirements('coremltools')
+    import coremltools as ct
+
+    LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
+    f = file.with_suffix('.mlmodel')
+
+    if nms:
+        model = iOSModel(model, im)
+    ts = torch.jit.trace(model, im, strict=False)  # TorchScript model
+    ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
+    bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
+    if bits < 32:
+        if MACOS:  # quantization only supported on macOS
+            with warnings.catch_warnings():
+                warnings.filterwarnings('ignore', category=DeprecationWarning)  # suppress numpy==1.20 float warning
+                ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
+        else:
+            print(f'{prefix} quantization only supported on macOS, skipping...')
+    ct_model.save(f)
+    return f, ct_model
+
+
+@try_export
+def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
+    # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
+    assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
+    try:
+        import tensorrt as trt
+    except Exception:
+        if platform.system() == 'Linux':
+            check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
+        import tensorrt as trt
+
+    if trt.__version__[0] == '7':  # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
+        grid = model.model[-1].anchor_grid
+        model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
+        export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
+        model.model[-1].anchor_grid = grid
+    else:  # TensorRT >= 8
+        check_version(trt.__version__, '8.0.0', hard=True)  # require tensorrt>=8.0.0
+        export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
+    onnx = file.with_suffix('.onnx')
+
+    LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
+    assert onnx.exists(), f'failed to export ONNX file: {onnx}'
+    f = file.with_suffix('.engine')  # TensorRT engine file
+    logger = trt.Logger(trt.Logger.INFO)
+    if verbose:
+        logger.min_severity = trt.Logger.Severity.VERBOSE
+
+    builder = trt.Builder(logger)
+    config = builder.create_builder_config()
+    config.max_workspace_size = workspace * 1 << 30
+    # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30)  # fix TRT 8.4 deprecation notice
+
+    flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
+    network = builder.create_network(flag)
+    parser = trt.OnnxParser(network, logger)
+    if not parser.parse_from_file(str(onnx)):
+        raise RuntimeError(f'failed to load ONNX file: {onnx}')
+
+    inputs = [network.get_input(i) for i in range(network.num_inputs)]
+    outputs = [network.get_output(i) for i in range(network.num_outputs)]
+    for inp in inputs:
+        LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
+    for out in outputs:
+        LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
+
+    if dynamic:
+        if im.shape[0] <= 1:
+            LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument')
+        profile = builder.create_optimization_profile()
+        for inp in inputs:
+            profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
+        config.add_optimization_profile(profile)
+
+    LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
+    if builder.platform_has_fast_fp16 and half:
+        config.set_flag(trt.BuilderFlag.FP16)
+    with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
+        t.write(engine.serialize())
+    return f, None
+
+
+@try_export
+def export_saved_model(model,
+                       im,
+                       file,
+                       dynamic,
+                       tf_nms=False,
+                       agnostic_nms=False,
+                       topk_per_class=100,
+                       topk_all=100,
+                       iou_thres=0.45,
+                       conf_thres=0.25,
+                       keras=False,
+                       prefix=colorstr('TensorFlow SavedModel:')):
+    # YOLOv5 TensorFlow SavedModel export
+    try:
+        import tensorflow as tf
+    except Exception:
+        check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
+        import tensorflow as tf
+    from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
+
+    from models.tf import TFModel
+
+    LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+    if tf.__version__ > '2.13.1':
+        helper_url = 'https://github.com/ultralytics/yolov5/issues/12489'
+        LOGGER.info(
+            f'WARNING ⚠️ using Tensorflow {tf.__version__} > 2.13.1 might cause issue when exporting the model to tflite {helper_url}'
+        )  # handling issue https://github.com/ultralytics/yolov5/issues/12489
+    f = str(file).replace('.pt', '_saved_model')
+    batch_size, ch, *imgsz = list(im.shape)  # BCHW
+
+    tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
+    im = tf.zeros((batch_size, *imgsz, ch))  # BHWC order for TensorFlow
+    _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
+    inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
+    outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
+    keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
+    keras_model.trainable = False
+    keras_model.summary()
+    if keras:
+        keras_model.save(f, save_format='tf')
+    else:
+        spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
+        m = tf.function(lambda x: keras_model(x))  # full model
+        m = m.get_concrete_function(spec)
+        frozen_func = convert_variables_to_constants_v2(m)
+        tfm = tf.Module()
+        tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
+        tfm.__call__(im)
+        tf.saved_model.save(tfm,
+                            f,
+                            options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
+                                tf.__version__, '2.6') else tf.saved_model.SaveOptions())
+    return f, keras_model
+
+
+@try_export
+def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
+    # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
+    import tensorflow as tf
+    from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
+
+    LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+    f = file.with_suffix('.pb')
+
+    m = tf.function(lambda x: keras_model(x))  # full model
+    m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
+    frozen_func = convert_variables_to_constants_v2(m)
+    frozen_func.graph.as_graph_def()
+    tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
+    return f, None
+
+
+@try_export
+def export_tflite(keras_model, im, file, int8, per_tensor, data, nms, agnostic_nms,
+                  prefix=colorstr('TensorFlow Lite:')):
+    # YOLOv5 TensorFlow Lite export
+    import tensorflow as tf
+
+    LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+    batch_size, ch, *imgsz = list(im.shape)  # BCHW
+    f = str(file).replace('.pt', '-fp16.tflite')
+
+    converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
+    converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
+    converter.target_spec.supported_types = [tf.float16]
+    converter.optimizations = [tf.lite.Optimize.DEFAULT]
+    if int8:
+        from models.tf import representative_dataset_gen
+        dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
+        converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
+        converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
+        converter.target_spec.supported_types = []
+        converter.inference_input_type = tf.uint8  # or tf.int8
+        converter.inference_output_type = tf.uint8  # or tf.int8
+        converter.experimental_new_quantizer = True
+        if per_tensor:
+            converter._experimental_disable_per_channel = True
+        f = str(file).replace('.pt', '-int8.tflite')
+    if nms or agnostic_nms:
+        converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
+
+    tflite_model = converter.convert()
+    open(f, 'wb').write(tflite_model)
+    return f, None
+
+
+@try_export
+def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
+    # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
+    cmd = 'edgetpu_compiler --version'
+    help_url = 'https://coral.ai/docs/edgetpu/compiler/'
+    assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
+    if subprocess.run(f'{cmd} > /dev/null 2>&1', shell=True).returncode != 0:
+        LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
+        sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0  # sudo installed on system
+        for c in (
+                'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
+                'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
+                'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
+            subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
+    ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
+
+    LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
+    f = str(file).replace('.pt', '-int8_edgetpu.tflite')  # Edge TPU model
+    f_tfl = str(file).replace('.pt', '-int8.tflite')  # TFLite model
+
+    subprocess.run([
+        'edgetpu_compiler',
+        '-s',
+        '-d',
+        '-k',
+        '10',
+        '--out_dir',
+        str(file.parent),
+        f_tfl, ], check=True)
+    return f, None
+
+
+@try_export
+def export_tfjs(file, int8, prefix=colorstr('TensorFlow.js:')):
+    # YOLOv5 TensorFlow.js export
+    check_requirements('tensorflowjs')
+    import tensorflowjs as tfjs
+
+    LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
+    f = str(file).replace('.pt', '_web_model')  # js dir
+    f_pb = file.with_suffix('.pb')  # *.pb path
+    f_json = f'{f}/model.json'  # *.json path
+
+    args = [
+        'tensorflowjs_converter',
+        '--input_format=tf_frozen_model',
+        '--quantize_uint8' if int8 else '',
+        '--output_node_names=Identity,Identity_1,Identity_2,Identity_3',
+        str(f_pb),
+        str(f), ]
+    subprocess.run([arg for arg in args if arg], check=True)
+
+    json = Path(f_json).read_text()
+    with open(f_json, 'w') as j:  # sort JSON Identity_* in ascending order
+        subst = re.sub(
+            r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
+            r'"Identity.?.?": {"name": "Identity.?.?"}, '
+            r'"Identity.?.?": {"name": "Identity.?.?"}, '
+            r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
+            r'"Identity_1": {"name": "Identity_1"}, '
+            r'"Identity_2": {"name": "Identity_2"}, '
+            r'"Identity_3": {"name": "Identity_3"}}}', json)
+        j.write(subst)
+    return f, None
+
+
+def add_tflite_metadata(file, metadata, num_outputs):
+    # Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
+    with contextlib.suppress(ImportError):
+        # check_requirements('tflite_support')
+        from tflite_support import flatbuffers
+        from tflite_support import metadata as _metadata
+        from tflite_support import metadata_schema_py_generated as _metadata_fb
+
+        tmp_file = Path('/tmp/meta.txt')
+        with open(tmp_file, 'w') as meta_f:
+            meta_f.write(str(metadata))
+
+        model_meta = _metadata_fb.ModelMetadataT()
+        label_file = _metadata_fb.AssociatedFileT()
+        label_file.name = tmp_file.name
+        model_meta.associatedFiles = [label_file]
+
+        subgraph = _metadata_fb.SubGraphMetadataT()
+        subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
+        subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
+        model_meta.subgraphMetadata = [subgraph]
+
+        b = flatbuffers.Builder(0)
+        b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
+        metadata_buf = b.Output()
+
+        populator = _metadata.MetadataPopulator.with_model_file(file)
+        populator.load_metadata_buffer(metadata_buf)
+        populator.load_associated_files([str(tmp_file)])
+        populator.populate()
+        tmp_file.unlink()
+
+
+def pipeline_coreml(model, im, file, names, y, prefix=colorstr('CoreML Pipeline:')):
+    # YOLOv5 CoreML pipeline
+    import coremltools as ct
+    from PIL import Image
+
+    print(f'{prefix} starting pipeline with coremltools {ct.__version__}...')
+    batch_size, ch, h, w = list(im.shape)  # BCHW
+    t = time.time()
+
+    # YOLOv5 Output shapes
+    spec = model.get_spec()
+    out0, out1 = iter(spec.description.output)
+    if platform.system() == 'Darwin':
+        img = Image.new('RGB', (w, h))  # img(192 width, 320 height)
+        # img = torch.zeros((*opt.img_size, 3)).numpy()  # img size(320,192,3) iDetection
+        out = model.predict({'image': img})
+        out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape
+    else:  # linux and windows can not run model.predict(), get sizes from pytorch output y
+        s = tuple(y[0].shape)
+        out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4)  # (3780, 80), (3780, 4)
+
+    # Checks
+    nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
+    na, nc = out0_shape
+    # na, nc = out0.type.multiArrayType.shape  # number anchors, classes
+    assert len(names) == nc, f'{len(names)} names found for nc={nc}'  # check
+
+    # Define output shapes (missing)
+    out0.type.multiArrayType.shape[:] = out0_shape  # (3780, 80)
+    out1.type.multiArrayType.shape[:] = out1_shape  # (3780, 4)
+    # spec.neuralNetwork.preprocessing[0].featureName = '0'
+
+    # Flexible input shapes
+    # from coremltools.models.neural_network import flexible_shape_utils
+    # s = [] # shapes
+    # s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
+    # s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384))  # (height, width)
+    # flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
+    # r = flexible_shape_utils.NeuralNetworkImageSizeRange()  # shape ranges
+    # r.add_height_range((192, 640))
+    # r.add_width_range((192, 640))
+    # flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
+
+    # Print
+    print(spec.description)
+
+    # Model from spec
+    model = ct.models.MLModel(spec)
+
+    # 3. Create NMS protobuf
+    nms_spec = ct.proto.Model_pb2.Model()
+    nms_spec.specificationVersion = 5
+    for i in range(2):
+        decoder_output = model._spec.description.output[i].SerializeToString()
+        nms_spec.description.input.add()
+        nms_spec.description.input[i].ParseFromString(decoder_output)
+        nms_spec.description.output.add()
+        nms_spec.description.output[i].ParseFromString(decoder_output)
+
+    nms_spec.description.output[0].name = 'confidence'
+    nms_spec.description.output[1].name = 'coordinates'
+
+    output_sizes = [nc, 4]
+    for i in range(2):
+        ma_type = nms_spec.description.output[i].type.multiArrayType
+        ma_type.shapeRange.sizeRanges.add()
+        ma_type.shapeRange.sizeRanges[0].lowerBound = 0
+        ma_type.shapeRange.sizeRanges[0].upperBound = -1
+        ma_type.shapeRange.sizeRanges.add()
+        ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
+        ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
+        del ma_type.shape[:]
+
+    nms = nms_spec.nonMaximumSuppression
+    nms.confidenceInputFeatureName = out0.name  # 1x507x80
+    nms.coordinatesInputFeatureName = out1.name  # 1x507x4
+    nms.confidenceOutputFeatureName = 'confidence'
+    nms.coordinatesOutputFeatureName = 'coordinates'
+    nms.iouThresholdInputFeatureName = 'iouThreshold'
+    nms.confidenceThresholdInputFeatureName = 'confidenceThreshold'
+    nms.iouThreshold = 0.45
+    nms.confidenceThreshold = 0.25
+    nms.pickTop.perClass = True
+    nms.stringClassLabels.vector.extend(names.values())
+    nms_model = ct.models.MLModel(nms_spec)
+
+    # 4. Pipeline models together
+    pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)),
+                                                           ('iouThreshold', ct.models.datatypes.Double()),
+                                                           ('confidenceThreshold', ct.models.datatypes.Double())],
+                                           output_features=['confidence', 'coordinates'])
+    pipeline.add_model(model)
+    pipeline.add_model(nms_model)
+
+    # Correct datatypes
+    pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
+    pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
+    pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
+
+    # Update metadata
+    pipeline.spec.specificationVersion = 5
+    pipeline.spec.description.metadata.versionString = 'https://github.com/ultralytics/yolov5'
+    pipeline.spec.description.metadata.shortDescription = 'https://github.com/ultralytics/yolov5'
+    pipeline.spec.description.metadata.author = 'glenn.jocher@ultralytics.com'
+    pipeline.spec.description.metadata.license = 'https://github.com/ultralytics/yolov5/blob/master/LICENSE'
+    pipeline.spec.description.metadata.userDefined.update({
+        'classes': ','.join(names.values()),
+        'iou_threshold': str(nms.iouThreshold),
+        'confidence_threshold': str(nms.confidenceThreshold)})
+
+    # Save the model
+    f = file.with_suffix('.mlmodel')  # filename
+    model = ct.models.MLModel(pipeline.spec)
+    model.input_description['image'] = 'Input image'
+    model.input_description['iouThreshold'] = f'(optional) IOU Threshold override (default: {nms.iouThreshold})'
+    model.input_description['confidenceThreshold'] = \
+        f'(optional) Confidence Threshold override (default: {nms.confidenceThreshold})'
+    model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")'
+    model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)'
+    model.save(f)  # pipelined
+    print(f'{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)')
+
+
+@smart_inference_mode()
+def run(
+        data=ROOT / 'data/coco128.yaml',  # 'dataset.yaml path'
+        weights=ROOT / 'yolov5s.pt',  # weights path
+        imgsz=(640, 640),  # image (height, width)
+        batch_size=1,  # batch size
+        device='cpu',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        include=('torchscript', 'onnx'),  # include formats
+        half=False,  # FP16 half-precision export
+        inplace=False,  # set YOLOv5 Detect() inplace=True
+        keras=False,  # use Keras
+        optimize=False,  # TorchScript: optimize for mobile
+        int8=False,  # CoreML/TF INT8 quantization
+        per_tensor=False,  # TF per tensor quantization
+        dynamic=False,  # ONNX/TF/TensorRT: dynamic axes
+        simplify=False,  # ONNX: simplify model
+        opset=12,  # ONNX: opset version
+        verbose=False,  # TensorRT: verbose log
+        workspace=4,  # TensorRT: workspace size (GB)
+        nms=False,  # TF: add NMS to model
+        agnostic_nms=False,  # TF: add agnostic NMS to model
+        topk_per_class=100,  # TF.js NMS: topk per class to keep
+        topk_all=100,  # TF.js NMS: topk for all classes to keep
+        iou_thres=0.45,  # TF.js NMS: IoU threshold
+        conf_thres=0.25,  # TF.js NMS: confidence threshold
+):
+    t = time.time()
+    include = [x.lower() for x in include]  # to lowercase
+    fmts = tuple(export_formats()['Argument'][1:])  # --include arguments
+    flags = [x in include for x in fmts]
+    assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
+    jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags  # export booleans
+    file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)  # PyTorch weights
+
+    # Load PyTorch model
+    device = select_device(device)
+    if half:
+        assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
+        assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
+    model = attempt_load(weights, device=device, inplace=True, fuse=True)  # load FP32 model
+
+    # Checks
+    imgsz *= 2 if len(imgsz) == 1 else 1  # expand
+    if optimize:
+        assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
+
+    # Input
+    gs = int(max(model.stride))  # grid size (max stride)
+    imgsz = [check_img_size(x, gs) for x in imgsz]  # verify img_size are gs-multiples
+    im = torch.zeros(batch_size, 3, *imgsz).to(device)  # image size(1,3,320,192) BCHW iDetection
+
+    # Update model
+    model.eval()
+    for k, m in model.named_modules():
+        if isinstance(m, Detect):
+            m.inplace = inplace
+            m.dynamic = dynamic
+            m.export = True
+
+    for _ in range(2):
+        y = model(im)  # dry runs
+    if half and not coreml:
+        im, model = im.half(), model.half()  # to FP16
+    shape = tuple((y[0] if isinstance(y, tuple) else y).shape)  # model output shape
+    metadata = {'stride': int(max(model.stride)), 'names': model.names}  # model metadata
+    LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
+
+    # Exports
+    f = [''] * len(fmts)  # exported filenames
+    warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning)  # suppress TracerWarning
+    if jit:  # TorchScript
+        f[0], _ = export_torchscript(model, im, file, optimize)
+    if engine:  # TensorRT required before ONNX
+        f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
+    if onnx or xml:  # OpenVINO requires ONNX
+        f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
+    if xml:  # OpenVINO
+        f[3], _ = export_openvino(file, metadata, half, int8, data)
+    if coreml:  # CoreML
+        f[4], ct_model = export_coreml(model, im, file, int8, half, nms)
+        if nms:
+            pipeline_coreml(ct_model, im, file, model.names, y)
+    if any((saved_model, pb, tflite, edgetpu, tfjs)):  # TensorFlow formats
+        assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
+        assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
+        f[5], s_model = export_saved_model(model.cpu(),
+                                           im,
+                                           file,
+                                           dynamic,
+                                           tf_nms=nms or agnostic_nms or tfjs,
+                                           agnostic_nms=agnostic_nms or tfjs,
+                                           topk_per_class=topk_per_class,
+                                           topk_all=topk_all,
+                                           iou_thres=iou_thres,
+                                           conf_thres=conf_thres,
+                                           keras=keras)
+        if pb or tfjs:  # pb prerequisite to tfjs
+            f[6], _ = export_pb(s_model, file)
+        if tflite or edgetpu:
+            f[7], _ = export_tflite(s_model,
+                                    im,
+                                    file,
+                                    int8 or edgetpu,
+                                    per_tensor,
+                                    data=data,
+                                    nms=nms,
+                                    agnostic_nms=agnostic_nms)
+            if edgetpu:
+                f[8], _ = export_edgetpu(file)
+            add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
+        if tfjs:
+            f[9], _ = export_tfjs(file, int8)
+    if paddle:  # PaddlePaddle
+        f[10], _ = export_paddle(model, im, file, metadata)
+
+    # Finish
+    f = [str(x) for x in f if x]  # filter out '' and None
+    if any(f):
+        cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel))  # type
+        det &= not seg  # segmentation models inherit from SegmentationModel(DetectionModel)
+        dir = Path('segment' if seg else 'classify' if cls else '')
+        h = '--half' if half else ''  # --half FP16 inference arg
+        s = '# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference' if cls else \
+            '# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference' if seg else ''
+        LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
+                    f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
+                    f"\nDetect:          python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
+                    f"\nValidate:        python {dir / 'val.py'} --weights {f[-1]} {h}"
+                    f"\nPyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')  {s}"
+                    f'\nVisualize:       https://netron.app')
+    return f  # return list of exported files/dirs
+
+
+def parse_opt(known=False):
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
+    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
+    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+    parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
+    parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
+    parser.add_argument('--keras', action='store_true', help='TF: use Keras')
+    parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
+    parser.add_argument('--int8', action='store_true', help='CoreML/TF/OpenVINO INT8 quantization')
+    parser.add_argument('--per-tensor', action='store_true', help='TF per-tensor quantization')
+    parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
+    parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
+    parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version')
+    parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
+    parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
+    parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
+    parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
+    parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
+    parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
+    parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
+    parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
+    parser.add_argument(
+        '--include',
+        nargs='+',
+        default=['torchscript'],
+        help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
+    opt = parser.parse_known_args()[0] if known else parser.parse_args()
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
+        run(**vars(opt))
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)