|
a |
|
b/data/hyps/hyp.scratch-med.yaml |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
# Hyperparameters for medium-augmentation COCO training from scratch |
|
|
3 |
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300 |
|
|
4 |
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials |
|
|
5 |
|
|
|
6 |
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) |
|
|
7 |
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf) |
|
|
8 |
momentum: 0.937 # SGD momentum/Adam beta1 |
|
|
9 |
weight_decay: 0.0005 # optimizer weight decay 5e-4 |
|
|
10 |
warmup_epochs: 3.0 # warmup epochs (fractions ok) |
|
|
11 |
warmup_momentum: 0.8 # warmup initial momentum |
|
|
12 |
warmup_bias_lr: 0.1 # warmup initial bias lr |
|
|
13 |
box: 0.05 # box loss gain |
|
|
14 |
cls: 0.3 # cls loss gain |
|
|
15 |
cls_pw: 1.0 # cls BCELoss positive_weight |
|
|
16 |
obj: 0.7 # obj loss gain (scale with pixels) |
|
|
17 |
obj_pw: 1.0 # obj BCELoss positive_weight |
|
|
18 |
iou_t: 0.20 # IoU training threshold |
|
|
19 |
anchor_t: 4.0 # anchor-multiple threshold |
|
|
20 |
# anchors: 3 # anchors per output layer (0 to ignore) |
|
|
21 |
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) |
|
|
22 |
hsv_h: 0.015 # image HSV-Hue augmentation (fraction) |
|
|
23 |
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) |
|
|
24 |
hsv_v: 0.4 # image HSV-Value augmentation (fraction) |
|
|
25 |
degrees: 0.0 # image rotation (+/- deg) |
|
|
26 |
translate: 0.1 # image translation (+/- fraction) |
|
|
27 |
scale: 0.9 # image scale (+/- gain) |
|
|
28 |
shear: 0.0 # image shear (+/- deg) |
|
|
29 |
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 |
|
|
30 |
flipud: 0.0 # image flip up-down (probability) |
|
|
31 |
fliplr: 0.5 # image flip left-right (probability) |
|
|
32 |
mosaic: 1.0 # image mosaic (probability) |
|
|
33 |
mixup: 0.1 # image mixup (probability) |
|
|
34 |
copy_paste: 0.0 # segment copy-paste (probability) |