Switch to unified view

a b/data/hyps/hyp.my_augment.yaml
1
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
# Hyperparameters for low-augmentation COCO training from scratch
3
# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
4
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5
6
lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
7
lrf: 0.01  # final OneCycleLR learning rate (lr0 * lrf)
8
momentum: 0.937  # SGD momentum/Adam beta1
9
weight_decay: 0.0005  # optimizer weight decay 5e-4
10
warmup_epochs: 3.0  # warmup epochs (fractions ok)
11
warmup_momentum: 0.8  # warmup initial momentum
12
warmup_bias_lr: 0.1  # warmup initial bias lr
13
box: 0.05  # box loss gain
14
cls: 0.5  # cls loss gain
15
cls_pw: 1.0  # cls BCELoss positive_weight
16
obj: 1.0  # obj loss gain (scale with pixels)
17
obj_pw: 1.0  # obj BCELoss positive_weight
18
iou_t: 0.20  # IoU training threshold
19
anchor_t: 4.0  # anchor-multiple threshold
20
# anchors: 3  # anchors per output layer (0 to ignore)
21
fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
22
hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
23
hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
24
hsv_v: 0.4  # image HSV-Value augmentation (fraction)
25
degrees: 0.0  # image rotation (+/- deg)
26
translate: 0.1  # image translation (+/- fraction)
27
scale: 0.5  # image scale (+/- gain)
28
shear: 0.0  # image shear (+/- deg)
29
perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
30
flipud: 0.0  # image flip up-down (probability)
31
fliplr: 0.5  # image flip left-right (probability)
32
mosaic: 1.0  # image mosaic (probability)
33
mixup: 0.0  # image mixup (probability)
34
copy_paste: 0.0  # segment copy-paste (probability)