a b/data/VisDrone.yaml
1
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
3
# Example usage: python train.py --data VisDrone.yaml
4
# parent
5
# ├── yolov5
6
# └── datasets
7
#     └── VisDrone  ← downloads here (2.3 GB)
8
9
10
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
path: ../datasets/VisDrone  # dataset root dir
12
train: VisDrone2019-DET-train/images  # train images (relative to 'path')  6471 images
13
val: VisDrone2019-DET-val/images  # val images (relative to 'path')  548 images
14
test: VisDrone2019-DET-test-dev/images  # test images (optional)  1610 images
15
16
# Classes
17
names:
18
  0: pedestrian
19
  1: people
20
  2: bicycle
21
  3: car
22
  4: van
23
  5: truck
24
  6: tricycle
25
  7: awning-tricycle
26
  8: bus
27
  9: motor
28
29
30
# Download script/URL (optional) ---------------------------------------------------------------------------------------
31
download: |
32
  from utils.general import download, os, Path
33
34
  def visdrone2yolo(dir):
35
      from PIL import Image
36
      from tqdm import tqdm
37
38
      def convert_box(size, box):
39
          # Convert VisDrone box to YOLO xywh box
40
          dw = 1. / size[0]
41
          dh = 1. / size[1]
42
          return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
43
44
      (dir / 'labels').mkdir(parents=True, exist_ok=True)  # make labels directory
45
      pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
46
      for f in pbar:
47
          img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
48
          lines = []
49
          with open(f, 'r') as file:  # read annotation.txt
50
              for row in [x.split(',') for x in file.read().strip().splitlines()]:
51
                  if row[4] == '0':  # VisDrone 'ignored regions' class 0
52
                      continue
53
                  cls = int(row[5]) - 1
54
                  box = convert_box(img_size, tuple(map(int, row[:4])))
55
                  lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
56
                  with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
57
                      fl.writelines(lines)  # write label.txt
58
59
60
  # Download
61
  dir = Path(yaml['path'])  # dataset root dir
62
  urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
63
          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
64
          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
65
          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
66
  download(urls, dir=dir, curl=True, threads=4)
67
68
  # Convert
69
  for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
70
      visdrone2yolo(dir / d)  # convert VisDrone annotations to YOLO labels