Diff of /data/VOC.yaml [000000] .. [190ca4]

Switch to unified view

a b/data/VOC.yaml
1
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
3
# Example usage: python train.py --data VOC.yaml
4
# parent
5
# ├── yolov5
6
# └── datasets
7
#     └── VOC  ← downloads here (2.8 GB)
8
9
10
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
path: ../datasets/VOC
12
train: # train images (relative to 'path')  16551 images
13
  - images/train2012
14
  - images/train2007
15
  - images/val2012
16
  - images/val2007
17
val: # val images (relative to 'path')  4952 images
18
  - images/test2007
19
test: # test images (optional)
20
  - images/test2007
21
22
# Classes
23
names:
24
  0: aeroplane
25
  1: bicycle
26
  2: bird
27
  3: boat
28
  4: bottle
29
  5: bus
30
  6: car
31
  7: cat
32
  8: chair
33
  9: cow
34
  10: diningtable
35
  11: dog
36
  12: horse
37
  13: motorbike
38
  14: person
39
  15: pottedplant
40
  16: sheep
41
  17: sofa
42
  18: train
43
  19: tvmonitor
44
45
46
# Download script/URL (optional) ---------------------------------------------------------------------------------------
47
download: |
48
  import xml.etree.ElementTree as ET
49
50
  from tqdm import tqdm
51
  from utils.general import download, Path
52
53
54
  def convert_label(path, lb_path, year, image_id):
55
      def convert_box(size, box):
56
          dw, dh = 1. / size[0], 1. / size[1]
57
          x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
58
          return x * dw, y * dh, w * dw, h * dh
59
60
      in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
61
      out_file = open(lb_path, 'w')
62
      tree = ET.parse(in_file)
63
      root = tree.getroot()
64
      size = root.find('size')
65
      w = int(size.find('width').text)
66
      h = int(size.find('height').text)
67
68
      names = list(yaml['names'].values())  # names list
69
      for obj in root.iter('object'):
70
          cls = obj.find('name').text
71
          if cls in names and int(obj.find('difficult').text) != 1:
72
              xmlbox = obj.find('bndbox')
73
              bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
74
              cls_id = names.index(cls)  # class id
75
              out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
76
77
78
  # Download
79
  dir = Path(yaml['path'])  # dataset root dir
80
  url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
81
  urls = [f'{url}VOCtrainval_06-Nov-2007.zip',  # 446MB, 5012 images
82
          f'{url}VOCtest_06-Nov-2007.zip',  # 438MB, 4953 images
83
          f'{url}VOCtrainval_11-May-2012.zip']  # 1.95GB, 17126 images
84
  download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
85
86
  # Convert
87
  path = dir / 'images/VOCdevkit'
88
  for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
89
      imgs_path = dir / 'images' / f'{image_set}{year}'
90
      lbs_path = dir / 'labels' / f'{image_set}{year}'
91
      imgs_path.mkdir(exist_ok=True, parents=True)
92
      lbs_path.mkdir(exist_ok=True, parents=True)
93
94
      with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
95
          image_ids = f.read().strip().split()
96
      for id in tqdm(image_ids, desc=f'{image_set}{year}'):
97
          f = path / f'VOC{year}/JPEGImages/{id}.jpg'  # old img path
98
          lb_path = (lbs_path / f.name).with_suffix('.txt')  # new label path
99
          f.rename(imgs_path / f.name)  # move image
100
          convert_label(path, lb_path, year, id)  # convert labels to YOLO format