|
a |
|
b/data/SKU-110K.yaml |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail |
|
|
3 |
# Example usage: python train.py --data SKU-110K.yaml |
|
|
4 |
# parent |
|
|
5 |
# ├── yolov5 |
|
|
6 |
# └── datasets |
|
|
7 |
# └── SKU-110K ← downloads here (13.6 GB) |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
|
|
11 |
path: ../datasets/SKU-110K # dataset root dir |
|
|
12 |
train: train.txt # train images (relative to 'path') 8219 images |
|
|
13 |
val: val.txt # val images (relative to 'path') 588 images |
|
|
14 |
test: test.txt # test images (optional) 2936 images |
|
|
15 |
|
|
|
16 |
# Classes |
|
|
17 |
names: |
|
|
18 |
0: object |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
|
|
22 |
download: | |
|
|
23 |
import shutil |
|
|
24 |
from tqdm import tqdm |
|
|
25 |
from utils.general import np, pd, Path, download, xyxy2xywh |
|
|
26 |
|
|
|
27 |
|
|
|
28 |
# Download |
|
|
29 |
dir = Path(yaml['path']) # dataset root dir |
|
|
30 |
parent = Path(dir.parent) # download dir |
|
|
31 |
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz'] |
|
|
32 |
download(urls, dir=parent, delete=False) |
|
|
33 |
|
|
|
34 |
# Rename directories |
|
|
35 |
if dir.exists(): |
|
|
36 |
shutil.rmtree(dir) |
|
|
37 |
(parent / 'SKU110K_fixed').rename(dir) # rename dir |
|
|
38 |
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir |
|
|
39 |
|
|
|
40 |
# Convert labels |
|
|
41 |
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names |
|
|
42 |
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv': |
|
|
43 |
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations |
|
|
44 |
images, unique_images = x[:, 0], np.unique(x[:, 0]) |
|
|
45 |
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f: |
|
|
46 |
f.writelines(f'./images/{s}\n' for s in unique_images) |
|
|
47 |
for im in tqdm(unique_images, desc=f'Converting {dir / d}'): |
|
|
48 |
cls = 0 # single-class dataset |
|
|
49 |
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f: |
|
|
50 |
for r in x[images == im]: |
|
|
51 |
w, h = r[6], r[7] # image width, height |
|
|
52 |
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance |
|
|
53 |
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label |