Diff of /data/SKU-110K.yaml [000000] .. [190ca4]

Switch to unified view

a b/data/SKU-110K.yaml
1
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
3
# Example usage: python train.py --data SKU-110K.yaml
4
# parent
5
# ├── yolov5
6
# └── datasets
7
#     └── SKU-110K  ← downloads here (13.6 GB)
8
9
10
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
path: ../datasets/SKU-110K  # dataset root dir
12
train: train.txt  # train images (relative to 'path')  8219 images
13
val: val.txt  # val images (relative to 'path')  588 images
14
test: test.txt  # test images (optional)  2936 images
15
16
# Classes
17
names:
18
  0: object
19
20
21
# Download script/URL (optional) ---------------------------------------------------------------------------------------
22
download: |
23
  import shutil
24
  from tqdm import tqdm
25
  from utils.general import np, pd, Path, download, xyxy2xywh
26
27
28
  # Download
29
  dir = Path(yaml['path'])  # dataset root dir
30
  parent = Path(dir.parent)  # download dir
31
  urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
32
  download(urls, dir=parent, delete=False)
33
34
  # Rename directories
35
  if dir.exists():
36
      shutil.rmtree(dir)
37
  (parent / 'SKU110K_fixed').rename(dir)  # rename dir
38
  (dir / 'labels').mkdir(parents=True, exist_ok=True)  # create labels dir
39
40
  # Convert labels
41
  names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height'  # column names
42
  for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
43
      x = pd.read_csv(dir / 'annotations' / d, names=names).values  # annotations
44
      images, unique_images = x[:, 0], np.unique(x[:, 0])
45
      with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
46
          f.writelines(f'./images/{s}\n' for s in unique_images)
47
      for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
48
          cls = 0  # single-class dataset
49
          with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
50
              for r in x[images == im]:
51
                  w, h = r[6], r[7]  # image width, height
52
                  xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0]  # instance
53
                  f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n")  # write label