|
a |
|
b/data/ImageNet10.yaml |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University |
|
|
3 |
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels |
|
|
4 |
# Example usage: python classify/train.py --data imagenet |
|
|
5 |
# parent |
|
|
6 |
# ├── yolov5 |
|
|
7 |
# └── datasets |
|
|
8 |
# └── imagenet10 ← downloads here |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
|
|
12 |
path: ../datasets/imagenet10 # dataset root dir |
|
|
13 |
train: train # train images (relative to 'path') 1281167 images |
|
|
14 |
val: val # val images (relative to 'path') 50000 images |
|
|
15 |
test: # test images (optional) |
|
|
16 |
|
|
|
17 |
# Classes |
|
|
18 |
names: |
|
|
19 |
0: tench |
|
|
20 |
1: goldfish |
|
|
21 |
2: great white shark |
|
|
22 |
3: tiger shark |
|
|
23 |
4: hammerhead shark |
|
|
24 |
5: electric ray |
|
|
25 |
6: stingray |
|
|
26 |
7: cock |
|
|
27 |
8: hen |
|
|
28 |
9: ostrich |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
# Download script/URL (optional) |
|
|
32 |
download: data/scripts/get_imagenet10.sh |