--- a
+++ b/data/Argoverse.yaml
@@ -0,0 +1,74 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
+# Example usage: python train.py --data Argoverse.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── Argoverse  ← downloads here (31.3 GB)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/Argoverse  # dataset root dir
+train: Argoverse-1.1/images/train/  # train images (relative to 'path') 39384 images
+val: Argoverse-1.1/images/val/  # val images (relative to 'path') 15062 images
+test: Argoverse-1.1/images/test/  # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
+
+# Classes
+names:
+  0: person
+  1: bicycle
+  2: car
+  3: motorcycle
+  4: bus
+  5: truck
+  6: traffic_light
+  7: stop_sign
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import json
+
+  from tqdm import tqdm
+  from utils.general import download, Path
+
+
+  def argoverse2yolo(set):
+      labels = {}
+      a = json.load(open(set, "rb"))
+      for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
+          img_id = annot['image_id']
+          img_name = a['images'][img_id]['name']
+          img_label_name = f'{img_name[:-3]}txt'
+
+          cls = annot['category_id']  # instance class id
+          x_center, y_center, width, height = annot['bbox']
+          x_center = (x_center + width / 2) / 1920.0  # offset and scale
+          y_center = (y_center + height / 2) / 1200.0  # offset and scale
+          width /= 1920.0  # scale
+          height /= 1200.0  # scale
+
+          img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
+          if not img_dir.exists():
+              img_dir.mkdir(parents=True, exist_ok=True)
+
+          k = str(img_dir / img_label_name)
+          if k not in labels:
+              labels[k] = []
+          labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
+
+      for k in labels:
+          with open(k, "w") as f:
+              f.writelines(labels[k])
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
+  download(urls, dir=dir, delete=False)
+
+  # Convert
+  annotations_dir = 'Argoverse-HD/annotations/'
+  (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images')  # rename 'tracking' to 'images'
+  for d in "train.json", "val.json":
+      argoverse2yolo(dir / annotations_dir / d)  # convert VisDrone annotations to YOLO labels