|
a |
|
b/classify/val.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Validate a trained YOLOv5 classification model on a classification dataset |
|
|
4 |
|
|
|
5 |
Usage: |
|
|
6 |
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images) |
|
|
7 |
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet |
|
|
8 |
|
|
|
9 |
Usage - formats: |
|
|
10 |
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch |
|
|
11 |
yolov5s-cls.torchscript # TorchScript |
|
|
12 |
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn |
|
|
13 |
yolov5s-cls_openvino_model # OpenVINO |
|
|
14 |
yolov5s-cls.engine # TensorRT |
|
|
15 |
yolov5s-cls.mlmodel # CoreML (macOS-only) |
|
|
16 |
yolov5s-cls_saved_model # TensorFlow SavedModel |
|
|
17 |
yolov5s-cls.pb # TensorFlow GraphDef |
|
|
18 |
yolov5s-cls.tflite # TensorFlow Lite |
|
|
19 |
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU |
|
|
20 |
yolov5s-cls_paddle_model # PaddlePaddle |
|
|
21 |
""" |
|
|
22 |
|
|
|
23 |
import argparse |
|
|
24 |
import os |
|
|
25 |
import sys |
|
|
26 |
from pathlib import Path |
|
|
27 |
|
|
|
28 |
import torch |
|
|
29 |
from tqdm import tqdm |
|
|
30 |
|
|
|
31 |
FILE = Path(__file__).resolve() |
|
|
32 |
ROOT = FILE.parents[1] # YOLOv5 root directory |
|
|
33 |
if str(ROOT) not in sys.path: |
|
|
34 |
sys.path.append(str(ROOT)) # add ROOT to PATH |
|
|
35 |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative |
|
|
36 |
|
|
|
37 |
from models.common import DetectMultiBackend |
|
|
38 |
from utils.dataloaders import create_classification_dataloader |
|
|
39 |
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr, |
|
|
40 |
increment_path, print_args) |
|
|
41 |
from utils.torch_utils import select_device, smart_inference_mode |
|
|
42 |
|
|
|
43 |
|
|
|
44 |
@smart_inference_mode() |
|
|
45 |
def run( |
|
|
46 |
data=ROOT / '../datasets/mnist', # dataset dir |
|
|
47 |
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s) |
|
|
48 |
batch_size=128, # batch size |
|
|
49 |
imgsz=224, # inference size (pixels) |
|
|
50 |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu |
|
|
51 |
workers=8, # max dataloader workers (per RANK in DDP mode) |
|
|
52 |
verbose=False, # verbose output |
|
|
53 |
project=ROOT / 'runs/val-cls', # save to project/name |
|
|
54 |
name='exp', # save to project/name |
|
|
55 |
exist_ok=False, # existing project/name ok, do not increment |
|
|
56 |
half=False, # use FP16 half-precision inference |
|
|
57 |
dnn=False, # use OpenCV DNN for ONNX inference |
|
|
58 |
model=None, |
|
|
59 |
dataloader=None, |
|
|
60 |
criterion=None, |
|
|
61 |
pbar=None, |
|
|
62 |
): |
|
|
63 |
# Initialize/load model and set device |
|
|
64 |
training = model is not None |
|
|
65 |
if training: # called by train.py |
|
|
66 |
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model |
|
|
67 |
half &= device.type != 'cpu' # half precision only supported on CUDA |
|
|
68 |
model.half() if half else model.float() |
|
|
69 |
else: # called directly |
|
|
70 |
device = select_device(device, batch_size=batch_size) |
|
|
71 |
|
|
|
72 |
# Directories |
|
|
73 |
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run |
|
|
74 |
save_dir.mkdir(parents=True, exist_ok=True) # make dir |
|
|
75 |
|
|
|
76 |
# Load model |
|
|
77 |
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half) |
|
|
78 |
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine |
|
|
79 |
imgsz = check_img_size(imgsz, s=stride) # check image size |
|
|
80 |
half = model.fp16 # FP16 supported on limited backends with CUDA |
|
|
81 |
if engine: |
|
|
82 |
batch_size = model.batch_size |
|
|
83 |
else: |
|
|
84 |
device = model.device |
|
|
85 |
if not (pt or jit): |
|
|
86 |
batch_size = 1 # export.py models default to batch-size 1 |
|
|
87 |
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') |
|
|
88 |
|
|
|
89 |
# Dataloader |
|
|
90 |
data = Path(data) |
|
|
91 |
test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val |
|
|
92 |
dataloader = create_classification_dataloader(path=test_dir, |
|
|
93 |
imgsz=imgsz, |
|
|
94 |
batch_size=batch_size, |
|
|
95 |
augment=False, |
|
|
96 |
rank=-1, |
|
|
97 |
workers=workers) |
|
|
98 |
|
|
|
99 |
model.eval() |
|
|
100 |
pred, targets, loss, dt = [], [], 0, (Profile(device=device), Profile(device=device), Profile(device=device)) |
|
|
101 |
n = len(dataloader) # number of batches |
|
|
102 |
action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing' |
|
|
103 |
desc = f'{pbar.desc[:-36]}{action:>36}' if pbar else f'{action}' |
|
|
104 |
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0) |
|
|
105 |
with torch.cuda.amp.autocast(enabled=device.type != 'cpu'): |
|
|
106 |
for images, labels in bar: |
|
|
107 |
with dt[0]: |
|
|
108 |
images, labels = images.to(device, non_blocking=True), labels.to(device) |
|
|
109 |
|
|
|
110 |
with dt[1]: |
|
|
111 |
y = model(images) |
|
|
112 |
|
|
|
113 |
with dt[2]: |
|
|
114 |
pred.append(y.argsort(1, descending=True)[:, :5]) |
|
|
115 |
targets.append(labels) |
|
|
116 |
if criterion: |
|
|
117 |
loss += criterion(y, labels) |
|
|
118 |
|
|
|
119 |
loss /= n |
|
|
120 |
pred, targets = torch.cat(pred), torch.cat(targets) |
|
|
121 |
correct = (targets[:, None] == pred).float() |
|
|
122 |
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy |
|
|
123 |
top1, top5 = acc.mean(0).tolist() |
|
|
124 |
|
|
|
125 |
if pbar: |
|
|
126 |
pbar.desc = f'{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}' |
|
|
127 |
if verbose: # all classes |
|
|
128 |
LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}") |
|
|
129 |
LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}") |
|
|
130 |
for i, c in model.names.items(): |
|
|
131 |
acc_i = acc[targets == i] |
|
|
132 |
top1i, top5i = acc_i.mean(0).tolist() |
|
|
133 |
LOGGER.info(f'{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}') |
|
|
134 |
|
|
|
135 |
# Print results |
|
|
136 |
t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image |
|
|
137 |
shape = (1, 3, imgsz, imgsz) |
|
|
138 |
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t) |
|
|
139 |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") |
|
|
140 |
|
|
|
141 |
return top1, top5, loss |
|
|
142 |
|
|
|
143 |
|
|
|
144 |
def parse_opt(): |
|
|
145 |
parser = argparse.ArgumentParser() |
|
|
146 |
parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path') |
|
|
147 |
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)') |
|
|
148 |
parser.add_argument('--batch-size', type=int, default=128, help='batch size') |
|
|
149 |
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)') |
|
|
150 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
151 |
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') |
|
|
152 |
parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output') |
|
|
153 |
parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name') |
|
|
154 |
parser.add_argument('--name', default='exp', help='save to project/name') |
|
|
155 |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
|
156 |
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
|
157 |
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') |
|
|
158 |
opt = parser.parse_args() |
|
|
159 |
print_args(vars(opt)) |
|
|
160 |
return opt |
|
|
161 |
|
|
|
162 |
|
|
|
163 |
def main(opt): |
|
|
164 |
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) |
|
|
165 |
run(**vars(opt)) |
|
|
166 |
|
|
|
167 |
|
|
|
168 |
if __name__ == '__main__': |
|
|
169 |
opt = parse_opt() |
|
|
170 |
main(opt) |