|
a |
|
b/classify/predict.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc. |
|
|
4 |
|
|
|
5 |
Usage - sources: |
|
|
6 |
$ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam |
|
|
7 |
img.jpg # image |
|
|
8 |
vid.mp4 # video |
|
|
9 |
screen # screenshot |
|
|
10 |
path/ # directory |
|
|
11 |
list.txt # list of images |
|
|
12 |
list.streams # list of streams |
|
|
13 |
'path/*.jpg' # glob |
|
|
14 |
'https://youtu.be/LNwODJXcvt4' # YouTube |
|
|
15 |
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream |
|
|
16 |
|
|
|
17 |
Usage - formats: |
|
|
18 |
$ python classify/predict.py --weights yolov5s-cls.pt # PyTorch |
|
|
19 |
yolov5s-cls.torchscript # TorchScript |
|
|
20 |
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn |
|
|
21 |
yolov5s-cls_openvino_model # OpenVINO |
|
|
22 |
yolov5s-cls.engine # TensorRT |
|
|
23 |
yolov5s-cls.mlmodel # CoreML (macOS-only) |
|
|
24 |
yolov5s-cls_saved_model # TensorFlow SavedModel |
|
|
25 |
yolov5s-cls.pb # TensorFlow GraphDef |
|
|
26 |
yolov5s-cls.tflite # TensorFlow Lite |
|
|
27 |
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU |
|
|
28 |
yolov5s-cls_paddle_model # PaddlePaddle |
|
|
29 |
""" |
|
|
30 |
|
|
|
31 |
import argparse |
|
|
32 |
import os |
|
|
33 |
import platform |
|
|
34 |
import sys |
|
|
35 |
from pathlib import Path |
|
|
36 |
|
|
|
37 |
import torch |
|
|
38 |
import torch.nn.functional as F |
|
|
39 |
|
|
|
40 |
FILE = Path(__file__).resolve() |
|
|
41 |
ROOT = FILE.parents[1] # YOLOv5 root directory |
|
|
42 |
if str(ROOT) not in sys.path: |
|
|
43 |
sys.path.append(str(ROOT)) # add ROOT to PATH |
|
|
44 |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative |
|
|
45 |
|
|
|
46 |
from ultralytics.utils.plotting import Annotator |
|
|
47 |
|
|
|
48 |
from models.common import DetectMultiBackend |
|
|
49 |
from utils.augmentations import classify_transforms |
|
|
50 |
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams |
|
|
51 |
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, |
|
|
52 |
increment_path, print_args, strip_optimizer) |
|
|
53 |
from utils.torch_utils import select_device, smart_inference_mode |
|
|
54 |
|
|
|
55 |
|
|
|
56 |
@smart_inference_mode() |
|
|
57 |
def run( |
|
|
58 |
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s) |
|
|
59 |
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam) |
|
|
60 |
data=ROOT / 'data/coco128.yaml', # dataset.yaml path |
|
|
61 |
imgsz=(224, 224), # inference size (height, width) |
|
|
62 |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu |
|
|
63 |
view_img=False, # show results |
|
|
64 |
save_txt=False, # save results to *.txt |
|
|
65 |
nosave=False, # do not save images/videos |
|
|
66 |
augment=False, # augmented inference |
|
|
67 |
visualize=False, # visualize features |
|
|
68 |
update=False, # update all models |
|
|
69 |
project=ROOT / 'runs/predict-cls', # save results to project/name |
|
|
70 |
name='exp', # save results to project/name |
|
|
71 |
exist_ok=False, # existing project/name ok, do not increment |
|
|
72 |
half=False, # use FP16 half-precision inference |
|
|
73 |
dnn=False, # use OpenCV DNN for ONNX inference |
|
|
74 |
vid_stride=1, # video frame-rate stride |
|
|
75 |
): |
|
|
76 |
source = str(source) |
|
|
77 |
save_img = not nosave and not source.endswith('.txt') # save inference images |
|
|
78 |
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) |
|
|
79 |
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) |
|
|
80 |
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) |
|
|
81 |
screenshot = source.lower().startswith('screen') |
|
|
82 |
if is_url and is_file: |
|
|
83 |
source = check_file(source) # download |
|
|
84 |
|
|
|
85 |
# Directories |
|
|
86 |
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run |
|
|
87 |
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir |
|
|
88 |
|
|
|
89 |
# Load model |
|
|
90 |
device = select_device(device) |
|
|
91 |
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) |
|
|
92 |
stride, names, pt = model.stride, model.names, model.pt |
|
|
93 |
imgsz = check_img_size(imgsz, s=stride) # check image size |
|
|
94 |
|
|
|
95 |
# Dataloader |
|
|
96 |
bs = 1 # batch_size |
|
|
97 |
if webcam: |
|
|
98 |
view_img = check_imshow(warn=True) |
|
|
99 |
dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride) |
|
|
100 |
bs = len(dataset) |
|
|
101 |
elif screenshot: |
|
|
102 |
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) |
|
|
103 |
else: |
|
|
104 |
dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride) |
|
|
105 |
vid_path, vid_writer = [None] * bs, [None] * bs |
|
|
106 |
|
|
|
107 |
# Run inference |
|
|
108 |
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup |
|
|
109 |
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device)) |
|
|
110 |
for path, im, im0s, vid_cap, s in dataset: |
|
|
111 |
with dt[0]: |
|
|
112 |
im = torch.Tensor(im).to(model.device) |
|
|
113 |
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 |
|
|
114 |
if len(im.shape) == 3: |
|
|
115 |
im = im[None] # expand for batch dim |
|
|
116 |
|
|
|
117 |
# Inference |
|
|
118 |
with dt[1]: |
|
|
119 |
results = model(im) |
|
|
120 |
|
|
|
121 |
# Post-process |
|
|
122 |
with dt[2]: |
|
|
123 |
pred = F.softmax(results, dim=1) # probabilities |
|
|
124 |
|
|
|
125 |
# Process predictions |
|
|
126 |
for i, prob in enumerate(pred): # per image |
|
|
127 |
seen += 1 |
|
|
128 |
if webcam: # batch_size >= 1 |
|
|
129 |
p, im0, frame = path[i], im0s[i].copy(), dataset.count |
|
|
130 |
s += f'{i}: ' |
|
|
131 |
else: |
|
|
132 |
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) |
|
|
133 |
|
|
|
134 |
p = Path(p) # to Path |
|
|
135 |
save_path = str(save_dir / p.name) # im.jpg |
|
|
136 |
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt |
|
|
137 |
|
|
|
138 |
s += '%gx%g ' % im.shape[2:] # print string |
|
|
139 |
annotator = Annotator(im0, example=str(names), pil=True) |
|
|
140 |
|
|
|
141 |
# Print results |
|
|
142 |
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices |
|
|
143 |
s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, " |
|
|
144 |
|
|
|
145 |
# Write results |
|
|
146 |
text = '\n'.join(f'{prob[j]:.2f} {names[j]}' for j in top5i) |
|
|
147 |
if save_img or view_img: # Add bbox to image |
|
|
148 |
annotator.text([32, 32], text, txt_color=(255, 255, 255)) |
|
|
149 |
if save_txt: # Write to file |
|
|
150 |
with open(f'{txt_path}.txt', 'a') as f: |
|
|
151 |
f.write(text + '\n') |
|
|
152 |
|
|
|
153 |
# Stream results |
|
|
154 |
im0 = annotator.result() |
|
|
155 |
if view_img: |
|
|
156 |
if platform.system() == 'Linux' and p not in windows: |
|
|
157 |
windows.append(p) |
|
|
158 |
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) |
|
|
159 |
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) |
|
|
160 |
cv2.imshow(str(p), im0) |
|
|
161 |
cv2.waitKey(1) # 1 millisecond |
|
|
162 |
|
|
|
163 |
# Save results (image with detections) |
|
|
164 |
if save_img: |
|
|
165 |
if dataset.mode == 'image': |
|
|
166 |
cv2.imwrite(save_path, im0) |
|
|
167 |
else: # 'video' or 'stream' |
|
|
168 |
if vid_path[i] != save_path: # new video |
|
|
169 |
vid_path[i] = save_path |
|
|
170 |
if isinstance(vid_writer[i], cv2.VideoWriter): |
|
|
171 |
vid_writer[i].release() # release previous video writer |
|
|
172 |
if vid_cap: # video |
|
|
173 |
fps = vid_cap.get(cv2.CAP_PROP_FPS) |
|
|
174 |
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
|
175 |
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
|
176 |
else: # stream |
|
|
177 |
fps, w, h = 30, im0.shape[1], im0.shape[0] |
|
|
178 |
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos |
|
|
179 |
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) |
|
|
180 |
vid_writer[i].write(im0) |
|
|
181 |
|
|
|
182 |
# Print time (inference-only) |
|
|
183 |
LOGGER.info(f'{s}{dt[1].dt * 1E3:.1f}ms') |
|
|
184 |
|
|
|
185 |
# Print results |
|
|
186 |
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image |
|
|
187 |
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) |
|
|
188 |
if save_txt or save_img: |
|
|
189 |
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' |
|
|
190 |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") |
|
|
191 |
if update: |
|
|
192 |
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) |
|
|
193 |
|
|
|
194 |
|
|
|
195 |
def parse_opt(): |
|
|
196 |
parser = argparse.ArgumentParser() |
|
|
197 |
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)') |
|
|
198 |
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)') |
|
|
199 |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') |
|
|
200 |
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[224], help='inference size h,w') |
|
|
201 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
202 |
parser.add_argument('--view-img', action='store_true', help='show results') |
|
|
203 |
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
|
204 |
parser.add_argument('--nosave', action='store_true', help='do not save images/videos') |
|
|
205 |
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
|
206 |
parser.add_argument('--visualize', action='store_true', help='visualize features') |
|
|
207 |
parser.add_argument('--update', action='store_true', help='update all models') |
|
|
208 |
parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save results to project/name') |
|
|
209 |
parser.add_argument('--name', default='exp', help='save results to project/name') |
|
|
210 |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
|
211 |
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
|
212 |
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') |
|
|
213 |
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride') |
|
|
214 |
opt = parser.parse_args() |
|
|
215 |
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand |
|
|
216 |
print_args(vars(opt)) |
|
|
217 |
return opt |
|
|
218 |
|
|
|
219 |
|
|
|
220 |
def main(opt): |
|
|
221 |
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) |
|
|
222 |
run(**vars(opt)) |
|
|
223 |
|
|
|
224 |
|
|
|
225 |
if __name__ == '__main__': |
|
|
226 |
opt = parse_opt() |
|
|
227 |
main(opt) |