Diff of /classify/predict.py [000000] .. [190ca4]

Switch to side-by-side view

--- a
+++ b/classify/predict.py
@@ -0,0 +1,227 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
+
+Usage - sources:
+    $ python classify/predict.py --weights yolov5s-cls.pt --source 0                               # webcam
+                                                                   img.jpg                         # image
+                                                                   vid.mp4                         # video
+                                                                   screen                          # screenshot
+                                                                   path/                           # directory
+                                                                   list.txt                        # list of images
+                                                                   list.streams                    # list of streams
+                                                                   'path/*.jpg'                    # glob
+                                                                   'https://youtu.be/LNwODJXcvt4'  # YouTube
+                                                                   'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+
+Usage - formats:
+    $ python classify/predict.py --weights yolov5s-cls.pt                 # PyTorch
+                                           yolov5s-cls.torchscript        # TorchScript
+                                           yolov5s-cls.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                           yolov5s-cls_openvino_model     # OpenVINO
+                                           yolov5s-cls.engine             # TensorRT
+                                           yolov5s-cls.mlmodel            # CoreML (macOS-only)
+                                           yolov5s-cls_saved_model        # TensorFlow SavedModel
+                                           yolov5s-cls.pb                 # TensorFlow GraphDef
+                                           yolov5s-cls.tflite             # TensorFlow Lite
+                                           yolov5s-cls_edgetpu.tflite     # TensorFlow Edge TPU
+                                           yolov5s-cls_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+import torch.nn.functional as F
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from ultralytics.utils.plotting import Annotator
+
+from models.common import DetectMultiBackend
+from utils.augmentations import classify_transforms
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
+                           increment_path, print_args, strip_optimizer)
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+        weights=ROOT / 'yolov5s-cls.pt',  # model.pt path(s)
+        source=ROOT / 'data/images',  # file/dir/URL/glob/screen/0(webcam)
+        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
+        imgsz=(224, 224),  # inference size (height, width)
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        view_img=False,  # show results
+        save_txt=False,  # save results to *.txt
+        nosave=False,  # do not save images/videos
+        augment=False,  # augmented inference
+        visualize=False,  # visualize features
+        update=False,  # update all models
+        project=ROOT / 'runs/predict-cls',  # save results to project/name
+        name='exp',  # save results to project/name
+        exist_ok=False,  # existing project/name ok, do not increment
+        half=False,  # use FP16 half-precision inference
+        dnn=False,  # use OpenCV DNN for ONNX inference
+        vid_stride=1,  # video frame-rate stride
+):
+    source = str(source)
+    save_img = not nosave and not source.endswith('.txt')  # save inference images
+    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
+    webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
+    screenshot = source.lower().startswith('screen')
+    if is_url and is_file:
+        source = check_file(source)  # download
+
+    # Directories
+    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+    # Load model
+    device = select_device(device)
+    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+    stride, names, pt = model.stride, model.names, model.pt
+    imgsz = check_img_size(imgsz, s=stride)  # check image size
+
+    # Dataloader
+    bs = 1  # batch_size
+    if webcam:
+        view_img = check_imshow(warn=True)
+        dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
+        bs = len(dataset)
+    elif screenshot:
+        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+    else:
+        dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
+    vid_path, vid_writer = [None] * bs, [None] * bs
+
+    # Run inference
+    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
+    seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
+    for path, im, im0s, vid_cap, s in dataset:
+        with dt[0]:
+            im = torch.Tensor(im).to(model.device)
+            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
+            if len(im.shape) == 3:
+                im = im[None]  # expand for batch dim
+
+        # Inference
+        with dt[1]:
+            results = model(im)
+
+        # Post-process
+        with dt[2]:
+            pred = F.softmax(results, dim=1)  # probabilities
+
+        # Process predictions
+        for i, prob in enumerate(pred):  # per image
+            seen += 1
+            if webcam:  # batch_size >= 1
+                p, im0, frame = path[i], im0s[i].copy(), dataset.count
+                s += f'{i}: '
+            else:
+                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
+
+            p = Path(p)  # to Path
+            save_path = str(save_dir / p.name)  # im.jpg
+            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
+
+            s += '%gx%g ' % im.shape[2:]  # print string
+            annotator = Annotator(im0, example=str(names), pil=True)
+
+            # Print results
+            top5i = prob.argsort(0, descending=True)[:5].tolist()  # top 5 indices
+            s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
+
+            # Write results
+            text = '\n'.join(f'{prob[j]:.2f} {names[j]}' for j in top5i)
+            if save_img or view_img:  # Add bbox to image
+                annotator.text([32, 32], text, txt_color=(255, 255, 255))
+            if save_txt:  # Write to file
+                with open(f'{txt_path}.txt', 'a') as f:
+                    f.write(text + '\n')
+
+            # Stream results
+            im0 = annotator.result()
+            if view_img:
+                if platform.system() == 'Linux' and p not in windows:
+                    windows.append(p)
+                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
+                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+                cv2.imshow(str(p), im0)
+                cv2.waitKey(1)  # 1 millisecond
+
+            # Save results (image with detections)
+            if save_img:
+                if dataset.mode == 'image':
+                    cv2.imwrite(save_path, im0)
+                else:  # 'video' or 'stream'
+                    if vid_path[i] != save_path:  # new video
+                        vid_path[i] = save_path
+                        if isinstance(vid_writer[i], cv2.VideoWriter):
+                            vid_writer[i].release()  # release previous video writer
+                        if vid_cap:  # video
+                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
+                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+                        else:  # stream
+                            fps, w, h = 30, im0.shape[1], im0.shape[0]
+                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
+                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+                    vid_writer[i].write(im0)
+
+        # Print time (inference-only)
+        LOGGER.info(f'{s}{dt[1].dt * 1E3:.1f}ms')
+
+    # Print results
+    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
+    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
+    if save_txt or save_img:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    if update:
+        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
+    parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
+    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[224], help='inference size h,w')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--view-img', action='store_true', help='show results')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--visualize', action='store_true', help='visualize features')
+    parser.add_argument('--update', action='store_true', help='update all models')
+    parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save results to project/name')
+    parser.add_argument('--name', default='exp', help='save results to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
+    run(**vars(opt))
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)