[45a3e1]: / darkflow / net / help.py

Download this file

181 lines (149 with data), 5.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
tfnet secondary (helper) methods
"""
from ..utils.loader import create_loader
from time import time as timer
import tensorflow as tf
import numpy as np
import sys
import cv2
import os
old_graph_msg = 'Resolving old graph def {} (no guarantee)'
def build_train_op(self):
self.framework.loss(self.out)
self.say('Building {} train op'.format(self.meta['model']))
optimizer = self._TRAINER[self.FLAGS.trainer](self.FLAGS.lr)
gradients = optimizer.compute_gradients(self.framework.loss)
self.train_op = optimizer.apply_gradients(gradients)
def load_from_ckpt(self):
if self.FLAGS.load < 0: # load lastest ckpt
with open(os.path.join(self.FLAGS.backup, 'checkpoint'), 'r') as f:
last = f.readlines()[-1].strip()
load_point = last.split(' ')[1]
load_point = load_point.split('"')[1]
load_point = load_point.split('-')[-1]
self.FLAGS.load = int(load_point)
load_point = os.path.join(self.FLAGS.backup, self.meta['name'])
load_point = '{}-{}'.format(load_point, self.FLAGS.load)
self.say('Loading from {}'.format(load_point))
try:
self.saver.restore(self.sess, load_point)
except:
load_old_graph(self, load_point)
def say(self, *msgs):
if not self.FLAGS.verbalise:
return
msgs = list(msgs)
for msg in msgs:
if msg is None: continue
print(msg)
def load_old_graph(self, ckpt):
ckpt_loader = create_loader(ckpt)
self.say(old_graph_msg.format(ckpt))
for var in tf.global_variables():
name = var.name.split(':')[0]
args = [name, var.get_shape()]
val = ckpt_loader(args)
assert val is not None, \
'Cannot find and load {}'.format(var.name)
shp = val.shape
plh = tf.placeholder(tf.float32, shp)
op = tf.assign(var, plh)
self.sess.run(op, {plh: val})
def _get_fps(self, frame):
elapsed = int()
start = timer()
preprocessed = self.framework.preprocess(frame)
feed_dict = {self.inp: [preprocessed]}
net_out = self.sess.run(self.out, feed_dict)[0]
processed = self.framework.postprocess(net_out, frame, False)
return timer() - start
def camera(self):
file = self.FLAGS.demo
SaveVideo = self.FLAGS.saveVideo
if file == 'camera':
file = 0
else:
assert os.path.isfile(file), \
'file {} does not exist'.format(file)
camera = cv2.VideoCapture(file)
if file == 0:
self.say('Press [ESC] to quit demo')
assert camera.isOpened(), \
'Cannot capture source'
if file == 0: # camera window
cv2.namedWindow('', 0)
_, frame = camera.read()
height, width, _ = frame.shape
cv2.resizeWindow('', width, height)
else:
_, frame = camera.read()
height, width, _ = frame.shape
if SaveVideo:
fourcc = cv2.VideoWriter_fourcc(*'XVID')
if file == 0: # camera window
fps = 1 / self._get_fps(frame)
if fps < 1:
fps = 1
else:
fps = round(camera.get(cv2.CAP_PROP_FPS))
videoWriter = cv2.VideoWriter(
'video.avi', fourcc, fps, (width, height))
# buffers for demo in batch
buffer_inp = list()
buffer_pre = list()
elapsed = int()
start = timer()
self.say('Press [ESC] to quit demo')
# Loop through frames
while camera.isOpened():
elapsed += 1
_, frame = camera.read()
if frame is None:
print('\nEnd of Video')
break
preprocessed = self.framework.preprocess(frame)
buffer_inp.append(frame)
buffer_pre.append(preprocessed)
# Only process and imshow when queue is full
if elapsed % self.FLAGS.queue == 0:
feed_dict = {self.inp: buffer_pre}
net_out = self.sess.run(self.out, feed_dict)
for img, single_out in zip(buffer_inp, net_out):
postprocessed = self.framework.postprocess(
single_out, img, False)
if SaveVideo:
videoWriter.write(postprocessed)
if file == 0: # camera window
cv2.imshow('', postprocessed)
# Clear Buffers
buffer_inp = list()
buffer_pre = list()
if elapsed % 5 == 0:
sys.stdout.write('\r')
sys.stdout.write('{0:3.3f} FPS'.format(
elapsed / (timer() - start)))
sys.stdout.flush()
if file == 0: # camera window
choice = cv2.waitKey(1)
if choice == 27: break
sys.stdout.write('\n')
if SaveVideo:
videoWriter.release()
camera.release()
if file == 0: # camera window
cv2.destroyAllWindows()
def to_darknet(self):
darknet_ckpt = self.darknet
with self.graph.as_default() as g:
for var in tf.global_variables():
name = var.name.split(':')[0]
var_name = name.split('-')
l_idx = int(var_name[0])
w_sig = var_name[1].split('/')[-1]
l = darknet_ckpt.layers[l_idx]
l.w[w_sig] = var.eval(self.sess)
for layer in darknet_ckpt.layers:
for ph in layer.h:
layer.h[ph] = None
return darknet_ckpt