|
a |
|
b/darkflow/utils/process.py |
|
|
1 |
""" |
|
|
2 |
WARNING: spaghetti code. |
|
|
3 |
""" |
|
|
4 |
|
|
|
5 |
import numpy as np |
|
|
6 |
import pickle |
|
|
7 |
import os |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
def parser(model): |
|
|
11 |
""" |
|
|
12 |
Read the .cfg file to extract layers into `layers` |
|
|
13 |
as well as model-specific parameters into `meta` |
|
|
14 |
""" |
|
|
15 |
|
|
|
16 |
def _parse(l, i=1): |
|
|
17 |
return l.split('=')[i].strip() |
|
|
18 |
|
|
|
19 |
with open(model, 'rb') as f: |
|
|
20 |
lines = f.readlines() |
|
|
21 |
|
|
|
22 |
lines = [line.decode() for line in lines] |
|
|
23 |
|
|
|
24 |
meta = dict(); |
|
|
25 |
layers = list() # will contains layers' info |
|
|
26 |
h, w, c = [int()] * 3; |
|
|
27 |
layer = dict() |
|
|
28 |
for line in lines: |
|
|
29 |
line = line.strip() |
|
|
30 |
line = line.split('#')[0] |
|
|
31 |
if '[' in line: |
|
|
32 |
if layer != dict(): |
|
|
33 |
if layer['type'] == '[net]': |
|
|
34 |
h = layer['height'] |
|
|
35 |
w = layer['width'] |
|
|
36 |
c = layer['channels'] |
|
|
37 |
meta['net'] = layer |
|
|
38 |
else: |
|
|
39 |
if layer['type'] == '[crop]': |
|
|
40 |
h = layer['crop_height'] |
|
|
41 |
w = layer['crop_width'] |
|
|
42 |
layers += [layer] |
|
|
43 |
layer = {'type': line} |
|
|
44 |
else: |
|
|
45 |
try: |
|
|
46 |
i = float(_parse(line)) |
|
|
47 |
if i == int(i): i = int(i) |
|
|
48 |
layer[line.split('=')[0].strip()] = i |
|
|
49 |
except: |
|
|
50 |
try: |
|
|
51 |
key = _parse(line, 0) |
|
|
52 |
val = _parse(line, 1) |
|
|
53 |
layer[key] = val |
|
|
54 |
except: |
|
|
55 |
'banana ninja yadayada' |
|
|
56 |
|
|
|
57 |
meta.update(layer) # last layer contains meta info |
|
|
58 |
if 'anchors' in meta: |
|
|
59 |
splits = meta['anchors'].split(',') |
|
|
60 |
anchors = [float(x.strip()) for x in splits] |
|
|
61 |
meta['anchors'] = anchors |
|
|
62 |
meta['model'] = model # path to cfg, not model name |
|
|
63 |
meta['inp_size'] = [h, w, c] |
|
|
64 |
return layers, meta |
|
|
65 |
|
|
|
66 |
|
|
|
67 |
def cfg_yielder(model, binary): |
|
|
68 |
""" |
|
|
69 |
yielding each layer information to initialize `layer` |
|
|
70 |
""" |
|
|
71 |
layers, meta = parser(model); |
|
|
72 |
yield meta; |
|
|
73 |
h, w, c = meta['inp_size']; |
|
|
74 |
l = w * h * c |
|
|
75 |
|
|
|
76 |
# Start yielding |
|
|
77 |
flat = False # flag for 1st dense layer |
|
|
78 |
conv = '.conv.' in model |
|
|
79 |
for i, d in enumerate(layers): |
|
|
80 |
# ----------------------------------------------------- |
|
|
81 |
if d['type'] == '[crop]': |
|
|
82 |
yield ['crop', i] |
|
|
83 |
# ----------------------------------------------------- |
|
|
84 |
elif d['type'] == '[local]': |
|
|
85 |
n = d.get('filters', 1) |
|
|
86 |
size = d.get('size', 1) |
|
|
87 |
stride = d.get('stride', 1) |
|
|
88 |
pad = d.get('pad', 0) |
|
|
89 |
activation = d.get('activation', 'logistic') |
|
|
90 |
w_ = (w - 1 - (1 - pad) * (size - 1)) // stride + 1 |
|
|
91 |
h_ = (h - 1 - (1 - pad) * (size - 1)) // stride + 1 |
|
|
92 |
yield ['local', i, size, c, n, stride, |
|
|
93 |
pad, w_, h_, activation] |
|
|
94 |
if activation != 'linear': yield [activation, i] |
|
|
95 |
w, h, c = w_, h_, n |
|
|
96 |
l = w * h * c |
|
|
97 |
# ----------------------------------------------------- |
|
|
98 |
elif d['type'] == '[convolutional]': |
|
|
99 |
n = d.get('filters', 1) |
|
|
100 |
size = d.get('size', 1) |
|
|
101 |
stride = d.get('stride', 1) |
|
|
102 |
pad = d.get('pad', 0) |
|
|
103 |
padding = d.get('padding', 0) |
|
|
104 |
if pad: padding = size // 2 |
|
|
105 |
activation = d.get('activation', 'logistic') |
|
|
106 |
batch_norm = d.get('batch_normalize', 0) or conv |
|
|
107 |
yield ['convolutional', i, size, c, n, |
|
|
108 |
stride, padding, batch_norm, |
|
|
109 |
activation] |
|
|
110 |
if activation != 'linear': yield [activation, i] |
|
|
111 |
w_ = (w + 2 * padding - size) // stride + 1 |
|
|
112 |
h_ = (h + 2 * padding - size) // stride + 1 |
|
|
113 |
w, h, c = w_, h_, n |
|
|
114 |
l = w * h * c |
|
|
115 |
# ----------------------------------------------------- |
|
|
116 |
elif d['type'] == '[maxpool]': |
|
|
117 |
stride = d.get('stride', 1) |
|
|
118 |
size = d.get('size', stride) |
|
|
119 |
padding = d.get('padding', (size - 1) // 2) |
|
|
120 |
yield ['maxpool', i, size, stride, padding] |
|
|
121 |
w_ = (w + 2 * padding) // d['stride'] |
|
|
122 |
h_ = (h + 2 * padding) // d['stride'] |
|
|
123 |
w, h = w_, h_ |
|
|
124 |
l = w * h * c |
|
|
125 |
# ----------------------------------------------------- |
|
|
126 |
elif d['type'] == '[avgpool]': |
|
|
127 |
flat = True; |
|
|
128 |
l = c |
|
|
129 |
yield ['avgpool', i] |
|
|
130 |
# ----------------------------------------------------- |
|
|
131 |
elif d['type'] == '[softmax]': |
|
|
132 |
yield ['softmax', i, d['groups']] |
|
|
133 |
# ----------------------------------------------------- |
|
|
134 |
elif d['type'] == '[connected]': |
|
|
135 |
if not flat: |
|
|
136 |
yield ['flatten', i] |
|
|
137 |
flat = True |
|
|
138 |
activation = d.get('activation', 'logistic') |
|
|
139 |
yield ['connected', i, l, d['output'], activation] |
|
|
140 |
if activation != 'linear': yield [activation, i] |
|
|
141 |
l = d['output'] |
|
|
142 |
# ----------------------------------------------------- |
|
|
143 |
elif d['type'] == '[dropout]': |
|
|
144 |
yield ['dropout', i, d['probability']] |
|
|
145 |
# ----------------------------------------------------- |
|
|
146 |
elif d['type'] == '[select]': |
|
|
147 |
if not flat: |
|
|
148 |
yield ['flatten', i] |
|
|
149 |
flat = True |
|
|
150 |
inp = d.get('input', None) |
|
|
151 |
if type(inp) is str: |
|
|
152 |
file = inp.split(',')[0] |
|
|
153 |
layer_num = int(inp.split(',')[1]) |
|
|
154 |
with open(file, 'rb') as f: |
|
|
155 |
profiles = pickle.load(f, encoding='latin1')[0] |
|
|
156 |
layer = profiles[layer_num] |
|
|
157 |
else: |
|
|
158 |
layer = inp |
|
|
159 |
activation = d.get('activation', 'logistic') |
|
|
160 |
d['keep'] = d['keep'].split('/') |
|
|
161 |
classes = int(d['keep'][-1]) |
|
|
162 |
keep = [int(c) for c in d['keep'][0].split(',')] |
|
|
163 |
keep_n = len(keep) |
|
|
164 |
train_from = classes * d['bins'] |
|
|
165 |
for count in range(d['bins'] - 1): |
|
|
166 |
for num in keep[-keep_n:]: |
|
|
167 |
keep += [num + classes] |
|
|
168 |
k = 1 |
|
|
169 |
while layers[i - k]['type'] not in ['[connected]', '[extract]']: |
|
|
170 |
k += 1 |
|
|
171 |
if i - k < 0: |
|
|
172 |
break |
|
|
173 |
if i - k < 0: |
|
|
174 |
l_ = l |
|
|
175 |
elif layers[i - k]['type'] == 'connected': |
|
|
176 |
l_ = layers[i - k]['output'] |
|
|
177 |
else: |
|
|
178 |
l_ = layers[i - k].get('old', [l])[-1] |
|
|
179 |
yield ['select', i, l_, d['old_output'], |
|
|
180 |
activation, layer, d['output'], |
|
|
181 |
keep, train_from] |
|
|
182 |
if activation != 'linear': yield [activation, i] |
|
|
183 |
l = d['output'] |
|
|
184 |
# ----------------------------------------------------- |
|
|
185 |
elif d['type'] == '[conv-select]': |
|
|
186 |
n = d.get('filters', 1) |
|
|
187 |
size = d.get('size', 1) |
|
|
188 |
stride = d.get('stride', 1) |
|
|
189 |
pad = d.get('pad', 0) |
|
|
190 |
padding = d.get('padding', 0) |
|
|
191 |
if pad: padding = size // 2 |
|
|
192 |
activation = d.get('activation', 'logistic') |
|
|
193 |
batch_norm = d.get('batch_normalize', 0) or conv |
|
|
194 |
d['keep'] = d['keep'].split('/') |
|
|
195 |
classes = int(d['keep'][-1]) |
|
|
196 |
keep = [int(x) for x in d['keep'][0].split(',')] |
|
|
197 |
|
|
|
198 |
segment = classes + 5 |
|
|
199 |
assert n % segment == 0, \ |
|
|
200 |
'conv-select: segment failed' |
|
|
201 |
bins = n // segment |
|
|
202 |
keep_idx = list() |
|
|
203 |
for j in range(bins): |
|
|
204 |
offset = j * segment |
|
|
205 |
for k in range(5): |
|
|
206 |
keep_idx += [offset + k] |
|
|
207 |
for k in keep: |
|
|
208 |
keep_idx += [offset + 5 + k] |
|
|
209 |
w_ = (w + 2 * padding - size) // stride + 1 |
|
|
210 |
h_ = (h + 2 * padding - size) // stride + 1 |
|
|
211 |
c_ = len(keep_idx) |
|
|
212 |
yield ['conv-select', i, size, c, n, |
|
|
213 |
stride, padding, batch_norm, |
|
|
214 |
activation, keep_idx, c_] |
|
|
215 |
w, h, c = w_, h_, c_ |
|
|
216 |
l = w * h * c |
|
|
217 |
# ----------------------------------------------------- |
|
|
218 |
elif d['type'] == '[conv-extract]': |
|
|
219 |
file = d['profile'] |
|
|
220 |
with open(file, 'rb') as f: |
|
|
221 |
profiles = pickle.load(f, encoding='latin1')[0] |
|
|
222 |
inp_layer = None |
|
|
223 |
inp = d['input'] |
|
|
224 |
out = d['output'] |
|
|
225 |
inp_layer = None |
|
|
226 |
if inp >= 0: |
|
|
227 |
inp_layer = profiles[inp] |
|
|
228 |
if inp_layer is not None: |
|
|
229 |
assert len(inp_layer) == c, \ |
|
|
230 |
'Conv-extract does not match input dimension' |
|
|
231 |
out_layer = profiles[out] |
|
|
232 |
|
|
|
233 |
n = d.get('filters', 1) |
|
|
234 |
size = d.get('size', 1) |
|
|
235 |
stride = d.get('stride', 1) |
|
|
236 |
pad = d.get('pad', 0) |
|
|
237 |
padding = d.get('padding', 0) |
|
|
238 |
if pad: padding = size // 2 |
|
|
239 |
activation = d.get('activation', 'logistic') |
|
|
240 |
batch_norm = d.get('batch_normalize', 0) or conv |
|
|
241 |
|
|
|
242 |
k = 1 |
|
|
243 |
find = ['[convolutional]', '[conv-extract]'] |
|
|
244 |
while layers[i - k]['type'] not in find: |
|
|
245 |
k += 1 |
|
|
246 |
if i - k < 0: break |
|
|
247 |
if i - k >= 0: |
|
|
248 |
previous_layer = layers[i - k] |
|
|
249 |
c_ = previous_layer['filters'] |
|
|
250 |
else: |
|
|
251 |
c_ = c |
|
|
252 |
|
|
|
253 |
yield ['conv-extract', i, size, c_, n, |
|
|
254 |
stride, padding, batch_norm, |
|
|
255 |
activation, inp_layer, out_layer] |
|
|
256 |
if activation != 'linear': yield [activation, i] |
|
|
257 |
w_ = (w + 2 * padding - size) // stride + 1 |
|
|
258 |
h_ = (h + 2 * padding - size) // stride + 1 |
|
|
259 |
w, h, c = w_, h_, len(out_layer) |
|
|
260 |
l = w * h * c |
|
|
261 |
# ----------------------------------------------------- |
|
|
262 |
elif d['type'] == '[extract]': |
|
|
263 |
if not flat: |
|
|
264 |
yield ['flatten', i] |
|
|
265 |
flat = True |
|
|
266 |
activation = d.get('activation', 'logistic') |
|
|
267 |
file = d['profile'] |
|
|
268 |
with open(file, 'rb') as f: |
|
|
269 |
profiles = pickle.load(f, encoding='latin1')[0] |
|
|
270 |
inp_layer = None |
|
|
271 |
inp = d['input'] |
|
|
272 |
out = d['output'] |
|
|
273 |
if inp >= 0: |
|
|
274 |
inp_layer = profiles[inp] |
|
|
275 |
out_layer = profiles[out] |
|
|
276 |
old = d['old'] |
|
|
277 |
old = [int(x) for x in old.split(',')] |
|
|
278 |
if inp_layer is not None: |
|
|
279 |
if len(old) > 2: |
|
|
280 |
h_, w_, c_, n_ = old |
|
|
281 |
new_inp = list() |
|
|
282 |
for p in range(c_): |
|
|
283 |
for q in range(h_): |
|
|
284 |
for r in range(w_): |
|
|
285 |
if p not in inp_layer: |
|
|
286 |
continue |
|
|
287 |
new_inp += [r + w * (q + h * p)] |
|
|
288 |
inp_layer = new_inp |
|
|
289 |
old = [h_ * w_ * c_, n_] |
|
|
290 |
assert len(inp_layer) == l, \ |
|
|
291 |
'Extract does not match input dimension' |
|
|
292 |
d['old'] = old |
|
|
293 |
yield ['extract', i] + old + [activation] + [inp_layer, out_layer] |
|
|
294 |
if activation != 'linear': yield [activation, i] |
|
|
295 |
l = len(out_layer) |
|
|
296 |
# ----------------------------------------------------- |
|
|
297 |
elif d['type'] == '[route]': # add new layer here |
|
|
298 |
routes = d['layers'] |
|
|
299 |
if type(routes) is int: |
|
|
300 |
routes = [routes] |
|
|
301 |
else: |
|
|
302 |
routes = [int(x.strip()) for x in routes.split(',')] |
|
|
303 |
routes = [i + x if x < 0 else x for x in routes] |
|
|
304 |
for j, x in enumerate(routes): |
|
|
305 |
lx = layers[x]; |
|
|
306 |
xtype = lx['type'] |
|
|
307 |
_size = lx['_size'][:3] |
|
|
308 |
if j == 0: |
|
|
309 |
h, w, c = _size |
|
|
310 |
else: |
|
|
311 |
h_, w_, c_ = _size |
|
|
312 |
assert w_ == w and h_ == h, \ |
|
|
313 |
'Routing incompatible conv sizes' |
|
|
314 |
c += c_ |
|
|
315 |
yield ['route', i, routes] |
|
|
316 |
l = w * h * c |
|
|
317 |
# ----------------------------------------------------- |
|
|
318 |
elif d['type'] == '[reorg]': |
|
|
319 |
stride = d.get('stride', 1) |
|
|
320 |
yield ['reorg', i, stride] |
|
|
321 |
w = w // stride; |
|
|
322 |
h = h // stride; |
|
|
323 |
c = c * (stride ** 2) |
|
|
324 |
l = w * h * c |
|
|
325 |
# ----------------------------------------------------- |
|
|
326 |
else: |
|
|
327 |
exit('Layer {} not implemented'.format(d['type'])) |
|
|
328 |
|
|
|
329 |
d['_size'] = list([h, w, c, l, flat]) |
|
|
330 |
|
|
|
331 |
if not flat: |
|
|
332 |
meta['out_size'] = [h, w, c] |
|
|
333 |
else: |
|
|
334 |
meta['out_size'] = l |