|
a |
|
b/darkflow/net/ops/simple.py |
|
|
1 |
import tf_slim as slim |
|
|
2 |
from .baseop import BaseOp |
|
|
3 |
import tensorflow as tf |
|
|
4 |
from distutils.version import StrictVersion |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
class route(BaseOp): |
|
|
8 |
def forward(self): |
|
|
9 |
routes = self.lay.routes |
|
|
10 |
routes_out = list() |
|
|
11 |
for r in routes: |
|
|
12 |
this = self.inp |
|
|
13 |
while this.lay.number != r: |
|
|
14 |
this = this.inp |
|
|
15 |
assert this is not None, \ |
|
|
16 |
'Routing to non-existence {}'.format(r) |
|
|
17 |
routes_out += [this.out] |
|
|
18 |
self.out = tf.concat(routes_out, 3) |
|
|
19 |
|
|
|
20 |
def speak(self): |
|
|
21 |
msg = 'concat {}' |
|
|
22 |
return msg.format(self.lay.routes) |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
class connected(BaseOp): |
|
|
26 |
def forward(self): |
|
|
27 |
self.out = tf.nn.xw_plus_b( |
|
|
28 |
self.inp.out, |
|
|
29 |
self.lay.w['weights'], |
|
|
30 |
self.lay.w['biases'], |
|
|
31 |
name=self.scope) |
|
|
32 |
|
|
|
33 |
def speak(self): |
|
|
34 |
layer = self.lay |
|
|
35 |
args = [layer.inp, layer.out] |
|
|
36 |
args += [layer.activation] |
|
|
37 |
msg = 'full {} x {} {}' |
|
|
38 |
return msg.format(*args) |
|
|
39 |
|
|
|
40 |
|
|
|
41 |
class select(connected): |
|
|
42 |
"""a weird connected layer""" |
|
|
43 |
|
|
|
44 |
def speak(self): |
|
|
45 |
layer = self.lay |
|
|
46 |
args = [layer.inp, layer.out] |
|
|
47 |
args += [layer.activation] |
|
|
48 |
msg = 'sele {} x {} {}' |
|
|
49 |
return msg.format(*args) |
|
|
50 |
|
|
|
51 |
|
|
|
52 |
class extract(connected): |
|
|
53 |
"""a weird connected layer""" |
|
|
54 |
|
|
|
55 |
def speak(self): |
|
|
56 |
layer = self.lay |
|
|
57 |
args = [len(layer.inp), len(layer.out)] |
|
|
58 |
args += [layer.activation] |
|
|
59 |
msg = 'extr {} x {} {}' |
|
|
60 |
return msg.format(*args) |
|
|
61 |
|
|
|
62 |
|
|
|
63 |
class flatten(BaseOp): |
|
|
64 |
def forward(self): |
|
|
65 |
temp = tf.transpose( |
|
|
66 |
self.inp.out, [0, 3, 1, 2]) |
|
|
67 |
self.out = slim.flatten( |
|
|
68 |
temp, scope=self.scope) |
|
|
69 |
|
|
|
70 |
def speak(self): return 'flat' |
|
|
71 |
|
|
|
72 |
|
|
|
73 |
class softmax(BaseOp): |
|
|
74 |
def forward(self): |
|
|
75 |
self.out = tf.nn.softmax(self.inp.out) |
|
|
76 |
|
|
|
77 |
def speak(self): return 'softmax()' |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
class avgpool(BaseOp): |
|
|
81 |
def forward(self): |
|
|
82 |
self.out = tf.reduce_mean( |
|
|
83 |
self.inp.out, [1, 2], |
|
|
84 |
name=self.scope |
|
|
85 |
) |
|
|
86 |
|
|
|
87 |
def speak(self): return 'avgpool()' |
|
|
88 |
|
|
|
89 |
|
|
|
90 |
class dropout(BaseOp): |
|
|
91 |
def forward(self): |
|
|
92 |
if self.lay.h['pdrop'] is None: |
|
|
93 |
self.lay.h['pdrop'] = 1.0 |
|
|
94 |
self.out = tf.nn.dropout( |
|
|
95 |
self.inp.out, |
|
|
96 |
self.lay.h['pdrop'], |
|
|
97 |
name=self.scope |
|
|
98 |
) |
|
|
99 |
|
|
|
100 |
def speak(self): return 'drop' |
|
|
101 |
|
|
|
102 |
|
|
|
103 |
class crop(BaseOp): |
|
|
104 |
def forward(self): |
|
|
105 |
self.out = self.inp.out * 2. - 1. |
|
|
106 |
|
|
|
107 |
def speak(self): |
|
|
108 |
return 'scale to (-1, 1)' |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
class maxpool(BaseOp): |
|
|
112 |
def forward(self): |
|
|
113 |
self.out = tf.nn.max_pool( |
|
|
114 |
self.inp.out, padding='SAME', |
|
|
115 |
ksize=[1] + [self.lay.ksize] * 2 + [1], |
|
|
116 |
strides=[1] + [self.lay.stride] * 2 + [1], |
|
|
117 |
name=self.scope |
|
|
118 |
) |
|
|
119 |
|
|
|
120 |
def speak(self): |
|
|
121 |
l = self.lay |
|
|
122 |
return 'maxp {}x{}p{}_{}'.format( |
|
|
123 |
l.ksize, l.ksize, l.pad, l.stride) |
|
|
124 |
|
|
|
125 |
|
|
|
126 |
class leaky(BaseOp): |
|
|
127 |
def forward(self): |
|
|
128 |
self.out = tf.maximum( |
|
|
129 |
.1 * self.inp.out, |
|
|
130 |
self.inp.out, |
|
|
131 |
name=self.scope |
|
|
132 |
) |
|
|
133 |
|
|
|
134 |
def verbalise(self): pass |
|
|
135 |
|
|
|
136 |
|
|
|
137 |
class identity(BaseOp): |
|
|
138 |
def __init__(self, inp): |
|
|
139 |
self.inp = None |
|
|
140 |
self.out = inp |