|
a |
|
b/darkflow/net/help.py |
|
|
1 |
""" |
|
|
2 |
tfnet secondary (helper) methods |
|
|
3 |
""" |
|
|
4 |
from ..utils.loader import create_loader |
|
|
5 |
from time import time as timer |
|
|
6 |
import tensorflow as tf |
|
|
7 |
import numpy as np |
|
|
8 |
import sys |
|
|
9 |
import cv2 |
|
|
10 |
import os |
|
|
11 |
|
|
|
12 |
old_graph_msg = 'Resolving old graph def {} (no guarantee)' |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
def build_train_op(self): |
|
|
16 |
self.framework.loss(self.out) |
|
|
17 |
self.say('Building {} train op'.format(self.meta['model'])) |
|
|
18 |
optimizer = self._TRAINER[self.FLAGS.trainer](self.FLAGS.lr) |
|
|
19 |
gradients = optimizer.compute_gradients(self.framework.loss) |
|
|
20 |
self.train_op = optimizer.apply_gradients(gradients) |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
def load_from_ckpt(self): |
|
|
24 |
if self.FLAGS.load < 0: # load lastest ckpt |
|
|
25 |
with open(os.path.join(self.FLAGS.backup, 'checkpoint'), 'r') as f: |
|
|
26 |
last = f.readlines()[-1].strip() |
|
|
27 |
load_point = last.split(' ')[1] |
|
|
28 |
load_point = load_point.split('"')[1] |
|
|
29 |
load_point = load_point.split('-')[-1] |
|
|
30 |
self.FLAGS.load = int(load_point) |
|
|
31 |
|
|
|
32 |
load_point = os.path.join(self.FLAGS.backup, self.meta['name']) |
|
|
33 |
load_point = '{}-{}'.format(load_point, self.FLAGS.load) |
|
|
34 |
self.say('Loading from {}'.format(load_point)) |
|
|
35 |
try: |
|
|
36 |
self.saver.restore(self.sess, load_point) |
|
|
37 |
except: |
|
|
38 |
load_old_graph(self, load_point) |
|
|
39 |
|
|
|
40 |
|
|
|
41 |
def say(self, *msgs): |
|
|
42 |
if not self.FLAGS.verbalise: |
|
|
43 |
return |
|
|
44 |
msgs = list(msgs) |
|
|
45 |
for msg in msgs: |
|
|
46 |
if msg is None: continue |
|
|
47 |
print(msg) |
|
|
48 |
|
|
|
49 |
|
|
|
50 |
def load_old_graph(self, ckpt): |
|
|
51 |
ckpt_loader = create_loader(ckpt) |
|
|
52 |
self.say(old_graph_msg.format(ckpt)) |
|
|
53 |
|
|
|
54 |
for var in tf.global_variables(): |
|
|
55 |
name = var.name.split(':')[0] |
|
|
56 |
args = [name, var.get_shape()] |
|
|
57 |
val = ckpt_loader(args) |
|
|
58 |
assert val is not None, \ |
|
|
59 |
'Cannot find and load {}'.format(var.name) |
|
|
60 |
shp = val.shape |
|
|
61 |
plh = tf.placeholder(tf.float32, shp) |
|
|
62 |
op = tf.assign(var, plh) |
|
|
63 |
self.sess.run(op, {plh: val}) |
|
|
64 |
|
|
|
65 |
|
|
|
66 |
def _get_fps(self, frame): |
|
|
67 |
elapsed = int() |
|
|
68 |
start = timer() |
|
|
69 |
preprocessed = self.framework.preprocess(frame) |
|
|
70 |
feed_dict = {self.inp: [preprocessed]} |
|
|
71 |
net_out = self.sess.run(self.out, feed_dict)[0] |
|
|
72 |
processed = self.framework.postprocess(net_out, frame, False) |
|
|
73 |
return timer() - start |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
def camera(self): |
|
|
77 |
file = self.FLAGS.demo |
|
|
78 |
SaveVideo = self.FLAGS.saveVideo |
|
|
79 |
|
|
|
80 |
if file == 'camera': |
|
|
81 |
file = 0 |
|
|
82 |
else: |
|
|
83 |
assert os.path.isfile(file), \ |
|
|
84 |
'file {} does not exist'.format(file) |
|
|
85 |
|
|
|
86 |
camera = cv2.VideoCapture(file) |
|
|
87 |
|
|
|
88 |
if file == 0: |
|
|
89 |
self.say('Press [ESC] to quit demo') |
|
|
90 |
|
|
|
91 |
assert camera.isOpened(), \ |
|
|
92 |
'Cannot capture source' |
|
|
93 |
|
|
|
94 |
if file == 0: # camera window |
|
|
95 |
cv2.namedWindow('', 0) |
|
|
96 |
_, frame = camera.read() |
|
|
97 |
height, width, _ = frame.shape |
|
|
98 |
cv2.resizeWindow('', width, height) |
|
|
99 |
else: |
|
|
100 |
_, frame = camera.read() |
|
|
101 |
height, width, _ = frame.shape |
|
|
102 |
|
|
|
103 |
if SaveVideo: |
|
|
104 |
fourcc = cv2.VideoWriter_fourcc(*'XVID') |
|
|
105 |
if file == 0: # camera window |
|
|
106 |
fps = 1 / self._get_fps(frame) |
|
|
107 |
if fps < 1: |
|
|
108 |
fps = 1 |
|
|
109 |
else: |
|
|
110 |
fps = round(camera.get(cv2.CAP_PROP_FPS)) |
|
|
111 |
videoWriter = cv2.VideoWriter( |
|
|
112 |
'video.avi', fourcc, fps, (width, height)) |
|
|
113 |
|
|
|
114 |
# buffers for demo in batch |
|
|
115 |
buffer_inp = list() |
|
|
116 |
buffer_pre = list() |
|
|
117 |
|
|
|
118 |
elapsed = int() |
|
|
119 |
start = timer() |
|
|
120 |
self.say('Press [ESC] to quit demo') |
|
|
121 |
# Loop through frames |
|
|
122 |
while camera.isOpened(): |
|
|
123 |
elapsed += 1 |
|
|
124 |
_, frame = camera.read() |
|
|
125 |
if frame is None: |
|
|
126 |
print('\nEnd of Video') |
|
|
127 |
break |
|
|
128 |
preprocessed = self.framework.preprocess(frame) |
|
|
129 |
buffer_inp.append(frame) |
|
|
130 |
buffer_pre.append(preprocessed) |
|
|
131 |
|
|
|
132 |
# Only process and imshow when queue is full |
|
|
133 |
if elapsed % self.FLAGS.queue == 0: |
|
|
134 |
feed_dict = {self.inp: buffer_pre} |
|
|
135 |
net_out = self.sess.run(self.out, feed_dict) |
|
|
136 |
for img, single_out in zip(buffer_inp, net_out): |
|
|
137 |
postprocessed = self.framework.postprocess( |
|
|
138 |
single_out, img, False) |
|
|
139 |
if SaveVideo: |
|
|
140 |
videoWriter.write(postprocessed) |
|
|
141 |
if file == 0: # camera window |
|
|
142 |
cv2.imshow('', postprocessed) |
|
|
143 |
# Clear Buffers |
|
|
144 |
buffer_inp = list() |
|
|
145 |
buffer_pre = list() |
|
|
146 |
|
|
|
147 |
if elapsed % 5 == 0: |
|
|
148 |
sys.stdout.write('\r') |
|
|
149 |
sys.stdout.write('{0:3.3f} FPS'.format( |
|
|
150 |
elapsed / (timer() - start))) |
|
|
151 |
sys.stdout.flush() |
|
|
152 |
if file == 0: # camera window |
|
|
153 |
choice = cv2.waitKey(1) |
|
|
154 |
if choice == 27: break |
|
|
155 |
|
|
|
156 |
sys.stdout.write('\n') |
|
|
157 |
if SaveVideo: |
|
|
158 |
videoWriter.release() |
|
|
159 |
camera.release() |
|
|
160 |
if file == 0: # camera window |
|
|
161 |
cv2.destroyAllWindows() |
|
|
162 |
|
|
|
163 |
|
|
|
164 |
def to_darknet(self): |
|
|
165 |
darknet_ckpt = self.darknet |
|
|
166 |
|
|
|
167 |
with self.graph.as_default() as g: |
|
|
168 |
for var in tf.global_variables(): |
|
|
169 |
name = var.name.split(':')[0] |
|
|
170 |
var_name = name.split('-') |
|
|
171 |
l_idx = int(var_name[0]) |
|
|
172 |
w_sig = var_name[1].split('/')[-1] |
|
|
173 |
l = darknet_ckpt.layers[l_idx] |
|
|
174 |
l.w[w_sig] = var.eval(self.sess) |
|
|
175 |
|
|
|
176 |
for layer in darknet_ckpt.layers: |
|
|
177 |
for ph in layer.h: |
|
|
178 |
layer.h[ph] = None |
|
|
179 |
|
|
|
180 |
return darknet_ckpt |