|
a |
|
b/darkflow/net/build.py |
|
|
1 |
import tensorflow as tf |
|
|
2 |
import time |
|
|
3 |
from . import help |
|
|
4 |
from . import flow |
|
|
5 |
from .ops import op_create, identity |
|
|
6 |
from .ops import HEADER, LINE |
|
|
7 |
from .framework import create_framework |
|
|
8 |
from ..dark.darknet import Darknet |
|
|
9 |
import json |
|
|
10 |
import os |
|
|
11 |
|
|
|
12 |
tf = tf.compat.v1 |
|
|
13 |
tf.disable_v2_behavior() |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
class TFNet(object): |
|
|
17 |
_TRAINER = dict({ |
|
|
18 |
'rmsprop': tf.train.RMSPropOptimizer, |
|
|
19 |
'adadelta': tf.train.AdadeltaOptimizer, |
|
|
20 |
'adagrad': tf.train.AdagradOptimizer, |
|
|
21 |
'adagradDA': tf.train.AdagradDAOptimizer, |
|
|
22 |
'momentum': tf.train.MomentumOptimizer, |
|
|
23 |
'adam': tf.train.AdamOptimizer, |
|
|
24 |
'ftrl': tf.train.FtrlOptimizer, |
|
|
25 |
'sgd': tf.train.GradientDescentOptimizer |
|
|
26 |
}) |
|
|
27 |
|
|
|
28 |
# imported methods |
|
|
29 |
_get_fps = help._get_fps |
|
|
30 |
say = help.say |
|
|
31 |
train = flow.train |
|
|
32 |
camera = help.camera |
|
|
33 |
predict = flow.predict |
|
|
34 |
return_predict = flow.return_predict |
|
|
35 |
to_darknet = help.to_darknet |
|
|
36 |
build_train_op = help.build_train_op |
|
|
37 |
load_from_ckpt = help.load_from_ckpt |
|
|
38 |
|
|
|
39 |
def __init__(self, FLAGS, darknet=None): |
|
|
40 |
self.ntrain = 0 |
|
|
41 |
|
|
|
42 |
if isinstance(FLAGS, dict): |
|
|
43 |
from ..defaults import argHandler |
|
|
44 |
newFLAGS = argHandler() |
|
|
45 |
newFLAGS.setDefaults() |
|
|
46 |
newFLAGS.update(FLAGS) |
|
|
47 |
FLAGS = newFLAGS |
|
|
48 |
|
|
|
49 |
self.FLAGS = FLAGS |
|
|
50 |
if self.FLAGS.pbLoad and self.FLAGS.metaLoad: |
|
|
51 |
self.say('\nLoading from .pb and .meta') |
|
|
52 |
self.graph = tf.Graph() |
|
|
53 |
device_name = FLAGS.gpuName \ |
|
|
54 |
if FLAGS.gpu > 0.0 else None |
|
|
55 |
with tf.device(device_name): |
|
|
56 |
with self.graph.as_default() as g: |
|
|
57 |
self.build_from_pb() |
|
|
58 |
return |
|
|
59 |
|
|
|
60 |
if darknet is None: |
|
|
61 |
darknet = Darknet(FLAGS) |
|
|
62 |
self.ntrain = len(darknet.layers) |
|
|
63 |
|
|
|
64 |
self.darknet = darknet |
|
|
65 |
args = [darknet.meta, FLAGS] |
|
|
66 |
self.num_layer = len(darknet.layers) |
|
|
67 |
self.framework = create_framework(*args) |
|
|
68 |
|
|
|
69 |
self.meta = darknet.meta |
|
|
70 |
|
|
|
71 |
self.say('\nBuilding net ...') |
|
|
72 |
start = time.time() |
|
|
73 |
self.graph = tf.Graph() |
|
|
74 |
device_name = FLAGS.gpuName \ |
|
|
75 |
if FLAGS.gpu > 0.0 else None |
|
|
76 |
with tf.device(device_name): |
|
|
77 |
with self.graph.as_default() as g: |
|
|
78 |
self.build_forward() |
|
|
79 |
self.setup_meta_ops() |
|
|
80 |
self.say('Finished in {}s\n'.format( |
|
|
81 |
time.time() - start)) |
|
|
82 |
|
|
|
83 |
def build_from_pb(self): |
|
|
84 |
with tf.gfile.FastGFile(self.FLAGS.pbLoad, "rb") as f: |
|
|
85 |
graph_def = tf.GraphDef() |
|
|
86 |
graph_def.ParseFromString(f.read()) |
|
|
87 |
|
|
|
88 |
tf.import_graph_def( |
|
|
89 |
graph_def, |
|
|
90 |
name="" |
|
|
91 |
) |
|
|
92 |
with open(self.FLAGS.metaLoad, 'r') as fp: |
|
|
93 |
self.meta = json.load(fp) |
|
|
94 |
self.framework = create_framework(self.meta, self.FLAGS) |
|
|
95 |
|
|
|
96 |
# Placeholders |
|
|
97 |
self.inp = tf.get_default_graph().get_tensor_by_name('input:0') |
|
|
98 |
self.feed = dict() # other placeholders |
|
|
99 |
self.out = tf.get_default_graph().get_tensor_by_name('output:0') |
|
|
100 |
|
|
|
101 |
self.setup_meta_ops() |
|
|
102 |
|
|
|
103 |
def build_forward(self): |
|
|
104 |
verbalise = self.FLAGS.verbalise |
|
|
105 |
|
|
|
106 |
# Placeholders |
|
|
107 |
inp_size = [None] + self.meta['inp_size'] |
|
|
108 |
self.inp = tf.placeholder(tf.float32, inp_size, 'input') |
|
|
109 |
self.feed = dict() # other placeholders |
|
|
110 |
|
|
|
111 |
# Build the forward pass |
|
|
112 |
state = identity(self.inp) |
|
|
113 |
roof = self.num_layer - self.ntrain |
|
|
114 |
self.say(HEADER, LINE) |
|
|
115 |
for i, layer in enumerate(self.darknet.layers): |
|
|
116 |
scope = '{}-{}'.format(str(i), layer.type) |
|
|
117 |
args = [layer, state, i, roof, self.feed] |
|
|
118 |
state = op_create(*args) |
|
|
119 |
mess = state.verbalise() |
|
|
120 |
self.say(mess) |
|
|
121 |
self.say(LINE) |
|
|
122 |
|
|
|
123 |
self.top = state |
|
|
124 |
self.out = tf.identity(state.out, name='output') |
|
|
125 |
|
|
|
126 |
def setup_meta_ops(self): |
|
|
127 |
cfg = dict({ |
|
|
128 |
'allow_soft_placement': False, |
|
|
129 |
'log_device_placement': False |
|
|
130 |
}) |
|
|
131 |
|
|
|
132 |
utility = min(self.FLAGS.gpu, 1.) |
|
|
133 |
if utility > 0.0: |
|
|
134 |
self.say('GPU mode with {} usage'.format(utility)) |
|
|
135 |
cfg['gpu_options'] = tf.GPUOptions( |
|
|
136 |
per_process_gpu_memory_fraction=utility) |
|
|
137 |
cfg['allow_soft_placement'] = True |
|
|
138 |
else: |
|
|
139 |
self.say('Running entirely on CPU') |
|
|
140 |
cfg['device_count'] = {'GPU': 0} |
|
|
141 |
|
|
|
142 |
if self.FLAGS.train: self.build_train_op() |
|
|
143 |
|
|
|
144 |
if self.FLAGS.summary: |
|
|
145 |
self.summary_op = tf.summary.merge_all() |
|
|
146 |
self.writer = tf.summary.FileWriter(self.FLAGS.summary + 'train') |
|
|
147 |
|
|
|
148 |
self.sess = tf.Session(config=tf.ConfigProto(**cfg)) |
|
|
149 |
self.sess.run(tf.global_variables_initializer()) |
|
|
150 |
|
|
|
151 |
if not self.ntrain: return |
|
|
152 |
self.saver = tf.train.Saver(tf.global_variables(), |
|
|
153 |
max_to_keep=self.FLAGS.keep) |
|
|
154 |
if self.FLAGS.load != 0: self.load_from_ckpt() |
|
|
155 |
|
|
|
156 |
if self.FLAGS.summary: |
|
|
157 |
self.writer.add_graph(self.sess.graph) |
|
|
158 |
|
|
|
159 |
def savepb(self): |
|
|
160 |
""" |
|
|
161 |
Create a standalone const graph def that |
|
|
162 |
C++ can load and run. |
|
|
163 |
""" |
|
|
164 |
darknet_pb = self.to_darknet() |
|
|
165 |
flags_pb = self.FLAGS |
|
|
166 |
flags_pb.verbalise = False |
|
|
167 |
|
|
|
168 |
flags_pb.train = False |
|
|
169 |
# rebuild another tfnet. all const. |
|
|
170 |
tfnet_pb = TFNet(flags_pb, darknet_pb) |
|
|
171 |
tfnet_pb.sess = tf.Session(graph=tfnet_pb.graph) |
|
|
172 |
# tfnet_pb.predict() # uncomment for unit testing |
|
|
173 |
name = 'built_graph/{}.pb'.format(self.meta['name']) |
|
|
174 |
os.makedirs(os.path.dirname(name), exist_ok=True) |
|
|
175 |
# Save dump of everything in meta |
|
|
176 |
with open('built_graph/{}.meta'.format(self.meta['name']), 'w') as fp: |
|
|
177 |
json.dump(self.meta, fp) |
|
|
178 |
self.say('Saving const graph def to {}'.format(name)) |
|
|
179 |
graph_def = tfnet_pb.sess.graph_def |
|
|
180 |
tf.train.write_graph(graph_def, './', name, False) |