--- a +++ b/darkflow/dark/connected.py @@ -0,0 +1,112 @@ +from .layer import Layer +import numpy as np + + +class extract_layer(Layer): + def setup(self, old_inp, old_out, + activation, inp, out): + if inp is None: inp = range(old_inp) + self.activation = activation + self.old_inp = old_inp + self.old_out = old_out + self.inp = inp + self.out = out + self.wshape = { + 'biases': [len(self.out)], + 'weights': [len(self.inp), len(self.out)] + } + + @property + def signature(self): + sig = ['connected'] + sig += self._signature[1:-2] + return sig + + def present(self): + args = self.signature + self.presenter = connected_layer(*args) + + def recollect(self, val): + w = val['weights'] + b = val['biases'] + if w is None: self.w = val; return + w = np.take(w, self.inp, 0) + w = np.take(w, self.out, 1) + b = np.take(b, self.out) + assert1 = w.shape == tuple(self.wshape['weights']) + assert2 = b.shape == tuple(self.wshape['biases']) + assert assert1 and assert2, \ + 'Dimension does not match in {} recollect'.format( + self._signature) + + self.w['weights'] = w + self.w['biases'] = b + + +class select_layer(Layer): + def setup(self, inp, old, + activation, inp_idx, + out, keep, train): + self.old = old + self.keep = keep + self.train = train + self.inp_idx = inp_idx + self.activation = activation + inp_dim = inp + if inp_idx is not None: + inp_dim = len(inp_idx) + self.inp = inp_dim + self.out = out + self.wshape = { + 'biases': [out], + 'weights': [inp_dim, out] + } + + @property + def signature(self): + sig = ['connected'] + sig += self._signature[1:-4] + return sig + + def present(self): + args = self.signature + self.presenter = connected_layer(*args) + + def recollect(self, val): + w = val['weights'] + b = val['biases'] + if w is None: self.w = val; return + if self.inp_idx is not None: + w = np.take(w, self.inp_idx, 0) + + keep_b = np.take(b, self.keep) + keep_w = np.take(w, self.keep, 1) + train_b = b[self.train:] + train_w = w[:, self.train:] + self.w['biases'] = np.concatenate( + (keep_b, train_b), axis=0) + self.w['weights'] = np.concatenate( + (keep_w, train_w), axis=1) + + +class connected_layer(Layer): + def setup(self, input_size, + output_size, activation): + self.activation = activation + self.inp = input_size + self.out = output_size + self.wshape = { + 'biases': [self.out], + 'weights': [self.inp, self.out] + } + + def finalize(self, transpose): + weights = self.w['weights'] + if weights is None: return + shp = self.wshape['weights'] + if not transpose: + weights = weights.reshape(shp[::-1]) + weights = weights.transpose([1, 0]) + else: + weights = weights.reshape(shp) + self.w['weights'] = weights