Switch to side-by-side view

--- a
+++ b/darkflow/dark/connected.py
@@ -0,0 +1,112 @@
+from .layer import Layer
+import numpy as np
+
+
+class extract_layer(Layer):
+    def setup(self, old_inp, old_out,
+              activation, inp, out):
+        if inp is None: inp = range(old_inp)
+        self.activation = activation
+        self.old_inp = old_inp
+        self.old_out = old_out
+        self.inp = inp
+        self.out = out
+        self.wshape = {
+            'biases': [len(self.out)],
+            'weights': [len(self.inp), len(self.out)]
+        }
+
+    @property
+    def signature(self):
+        sig = ['connected']
+        sig += self._signature[1:-2]
+        return sig
+
+    def present(self):
+        args = self.signature
+        self.presenter = connected_layer(*args)
+
+    def recollect(self, val):
+        w = val['weights']
+        b = val['biases']
+        if w is None: self.w = val; return
+        w = np.take(w, self.inp, 0)
+        w = np.take(w, self.out, 1)
+        b = np.take(b, self.out)
+        assert1 = w.shape == tuple(self.wshape['weights'])
+        assert2 = b.shape == tuple(self.wshape['biases'])
+        assert assert1 and assert2, \
+            'Dimension does not match in {} recollect'.format(
+                self._signature)
+
+        self.w['weights'] = w
+        self.w['biases'] = b
+
+
+class select_layer(Layer):
+    def setup(self, inp, old,
+              activation, inp_idx,
+              out, keep, train):
+        self.old = old
+        self.keep = keep
+        self.train = train
+        self.inp_idx = inp_idx
+        self.activation = activation
+        inp_dim = inp
+        if inp_idx is not None:
+            inp_dim = len(inp_idx)
+        self.inp = inp_dim
+        self.out = out
+        self.wshape = {
+            'biases': [out],
+            'weights': [inp_dim, out]
+        }
+
+    @property
+    def signature(self):
+        sig = ['connected']
+        sig += self._signature[1:-4]
+        return sig
+
+    def present(self):
+        args = self.signature
+        self.presenter = connected_layer(*args)
+
+    def recollect(self, val):
+        w = val['weights']
+        b = val['biases']
+        if w is None: self.w = val; return
+        if self.inp_idx is not None:
+            w = np.take(w, self.inp_idx, 0)
+
+        keep_b = np.take(b, self.keep)
+        keep_w = np.take(w, self.keep, 1)
+        train_b = b[self.train:]
+        train_w = w[:, self.train:]
+        self.w['biases'] = np.concatenate(
+            (keep_b, train_b), axis=0)
+        self.w['weights'] = np.concatenate(
+            (keep_w, train_w), axis=1)
+
+
+class connected_layer(Layer):
+    def setup(self, input_size,
+              output_size, activation):
+        self.activation = activation
+        self.inp = input_size
+        self.out = output_size
+        self.wshape = {
+            'biases': [self.out],
+            'weights': [self.inp, self.out]
+        }
+
+    def finalize(self, transpose):
+        weights = self.w['weights']
+        if weights is None: return
+        shp = self.wshape['weights']
+        if not transpose:
+            weights = weights.reshape(shp[::-1])
+            weights = weights.transpose([1, 0])
+        else:
+            weights = weights.reshape(shp)
+        self.w['weights'] = weights