Diff of /README.md [000000] .. [d34869]

Switch to side-by-side view

--- a
+++ b/README.md
@@ -0,0 +1,120 @@
+<h2 align="center">Automatic Identification and Counting of Blood Cells<h2>
+
+[![GitHub stars](https://img.shields.io/github/stars/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells)](https://github.com/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells/stargazers)
+[![GitHub forks](https://img.shields.io/github/forks/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells)](https://github.com/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells/network)
+[![GitHub issues](https://img.shields.io/github/issues/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells)](https://github.com/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells/issues)
+[![Version](https://img.shields.io/badge/version-2.1-green.svg?longCache=true&style=flat)](https://github.com/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells)
+[![GitHub license](https://img.shields.io/github/license/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells)](https://github.com/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells/blob/master/LICENSE)
+<!--<img src="https://user-images.githubusercontent.com/37298971/123714340-f8d70800-d82a-11eb-9742-042a5d9334a1.png" width="28">-->
+
+## Dataset
+
+The [```Complete Blood Count (CBC) Dataset```](https://github.com/MahmudulAlam/Complete-Blood-Cell-Count-Dataset) has
+been used for automatic identification and counting of blood cells. Download the dataset, unzip and put
+the ```Training```, ```Testing```, and ```Validation```folders in the working directory.
+
+## Requirements
+
+![requirements](https://img.shields.io/badge/Python-3.6-3480eb.svg?longCache=true&style=flat&logo=python)
+![requirements](https://img.shields.io/badge/Python-3.7-3480eb.svg?longCache=true&style=flat&logo=python)
+
+- Tensorflow-GPU==2.2.0 (tested on 2.1.0, 2.2.0, and 2.3.0) ```conda install tensorflow-gpu```
+- TF-slim==1.1.0 ```pip install tf-slim==1.1.0```
+- Weights: [```download```](https://1drv.ms/u/s!AlXVRhh1rUKThlxTievX0X1CpXd0?e=9cKxYb) the trained weights file for
+  blood cell detection and put the ```weights``` folder in the working directory.
+
+[![Download](https://img.shields.io/badge/download-weights-blue.svg?longCache=true&style=flat&logo=microsoft-onedrive)](https://1drv.ms/u/s!AlXVRhh1rUKThlxTievX0X1CpXd0?e=9cKxYb)
+[![Download](https://img.shields.io/badge/download-weights-ff160a.svg?longCache=true&style=flat&logo=mega)](https://mega.nz/#F!2kVUnKjS!z15tM9WLfga3l1gCNSLNGw)
+
+## Getting Started 
+
+1. Build the cython extension in place 
+```python setup.py build_ext --inplace```
+2. Run detect.py 
+```python detect.py```
+
+## Update
+The ```darkflow.cython_utils.cy_yolo_findboxes``` problem has been fixed. Make sure to build the cython extension in place before running the code. 
+
+[![Paper](https://img.shields.io/badge/TensorFlow-2.x-f57418.svg?longCache=true&style=flat&logo=tensorflow)](https://www.tensorflow.org/install)
+
+The code was originally written and developed with `TensorFlow v1.x`. The new updated version `v2.0`
+included `TensorFlow v2.x` support, tested on both TensorFlow `v2.1.0` and `v2.2.0`. You can download the previous
+version
+from **[`here`](https://github.com/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells/releases/tag/v1.0)**
+.
+
+## How to Run the Code  :runner:
+
+To detect the blood cells, simply run the `detect.py` file in the terminal or use an IDE. A step-by-step guideline of
+how to run the blood cell detection code in your computer is provided in
+this **[`wiki`](https://github.com/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells/wiki/A-Step-by-Step-Guide-of-How-to-Run-the-Code)**
+.
+If you have any trouble running the code and facing any errors please feel free to create
+an **[`issue`](https://github.com/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells/issues)**
+or **[`contact me`](https://mahmudulalam.github.io/#contact)**.
+
+## How to Train on Your Dataset  :bullettrain_side:
+
+A seven-step guideline of how to train on your own dataset is provided in
+this **[`wiki`](https://github.com/MahmudulAlam/Automatic-Identification-and-Counting-of-Blood-Cells/wiki/How-to-Train-on-Your-Dataset)**
+.
+
+## Paper
+
+[![Paper](https://img.shields.io/badge/paper-IETDigiLib-830ceb.svg?longCache=true&style=flat)](http://ietdl.org/t/kmgztb) [![Paper](https://img.shields.io/badge/paper-Wiley-282829.svg?longCache=true&style=flat)](https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/htl.2018.5098)
+
+The code was developed for the following blood cell detection paper. For a more detailed explanation of the proposed
+method, please go through the pdf of the [```paper```][1]. If you use this code or associated dataset, please cite this
+paper as:
+
+[***```Machine learning approach of automatic identification and counting of blood cells```***](https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/htl.2018.5098)
+
+```bibtex
+@article{alam2019machine,
+  title={Machine learning approach of automatic identification and counting of blood cells},
+  author={Alam, Mohammad Mahmudul and Islam, Mohammad Tariqul},
+  journal={Healthcare Technology Letters},
+  volume={6},
+  number={4},
+  pages={103--108},
+  year={2019},
+  publisher={IET}
+}
+```
+
+## Blood Cell Detection Output
+
+<p align="center">
+  <img src="https://user-images.githubusercontent.com/37298971/44617785-17eb0980-a88b-11e8-9018-c84f8be5cefa.png" width="500">
+</p>
+
+## KNN and IOU Based Verification
+
+In some cases, our model predicts the same platelet twice. To solve this problem we propose a k-nearest neighbor (KNN)
+and intersection over union (IOU) based verification system where we find the nearest platelet of a selected platelet
+and calculate their overlap. We are allowing only a 10% overlap between two platelets. If the overlap is more than that
+then it will be a spurious prediction and we will ignore the prediction.
+
+| Before Verification  | After Verification  |
+|:-:|:-:|
+| <p align="center"> <img src="https://user-images.githubusercontent.com/37298971/46260207-b27ede00-c504-11e8-9d00-7d7be151ee5d.jpg"> </p>  | <p align="center"> <img src="https://user-images.githubusercontent.com/37298971/46260504-a268fd80-c508-11e8-9ef0-5230d00f47a3.jpg">  |
+
+## Prediction on High-Resolution Image (HRI)
+
+We have used our model to detect and count blood cells from high-resolution blood cell smear images. These test images
+are of the size of ```3872 x 2592``` way higher than the size of our trained images of ```640 x 480```. So, to match the
+cell size of our trained images we divide those images into grid cells and run prediction in each grid cell and then
+combine all the prediction results.
+
+<h3 align="center">Dividing Image into Grid/Patch</h3>
+<p align="center">
+  <img src="https://user-images.githubusercontent.com/37298971/45962420-a39ab600-c042-11e8-975f-9b0a077f0e0f.jpg" width="700">
+</p>
+
+<h3 align="center">Combined Output</h3>
+<p align="center">
+  <img src="https://user-images.githubusercontent.com/37298971/45961699-055a2080-c041-11e8-95b0-1c8ac3c8875b.jpg" width="700">
+</p>
+
+[1]: https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/htl.2018.5098