from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtWidgets import QGraphicsScene, QGraphicsView,QMessageBox
import subprocess,shutil,os, urllib.request
from PyQt5.QtGui import QPixmap
import pandas as pd
import matplotlib.pyplot as plt
import os
import glob
import subprocess
import imaplib
from PIL import Image
import copy,cv2
import numpy as np
destination_folder = "cell_application/uploaded_images/"
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
output_folder="cell_application/output"
if not os.path.exists(output_folder):
os.makedirs(output_folder)
output_red="cell_application/outred"
if not os.path.exists(output_red):
os.makedirs(output_red)
output_pl="cell_application/outpl"
if not os.path.exists(output_pl):
os.makedirs(output_pl)
model_path = "./models/yolov7" # specify your model path
if not os.path.exists(model_path):
# Create the directory if it doesn't exist
os.makedirs(model_path, exist_ok=True)
# Clone the repository
subprocess.check_call(['git', 'clone', 'https://github.com/WongKinYiu/yolov7', model_path])
# Install the requirements
subprocess.check_call(['pip', 'install', '-r', os.path.join(model_path, 'requirements.txt')])
class GraphicsView(QGraphicsView):
def __init__(self, parent=None):
super(GraphicsView, self).__init__(parent)
self._isPanning = False
self._panStartX = 0
self._panStartY = 0
def wheelEvent(self, event):
factor = 1.15 if event.angleDelta().y() > 0 else 1 / 1.15
self.scale(factor, factor)
def mousePressEvent(self, event):
if event.button() == QtCore.Qt.MiddleButton:
self._isPanning = True
self._panStartX = event.x()
self._panStartY = event.y()
self.setCursor(QtCore.Qt.ClosedHandCursor)
event.accept()
else:
super(GraphicsView, self).mousePressEvent(event)
def mouseMoveEvent(self, event):
if self._isPanning:
self.horizontalScrollBar().setValue(self.horizontalScrollBar().value() - (event.x() - self._panStartX))
self.verticalScrollBar().setValue(self.verticalScrollBar().value() - (event.y() - self._panStartY))
self._panStartX = event.x()
self._panStartY = event.y()
event.accept()
else:
super(GraphicsView, self).mouseMoveEvent(event)
def mouseReleaseEvent(self, event):
if event.button() == QtCore.Qt.MiddleButton:
self._isPanning = False
self.setCursor(QtCore.Qt.ArrowCursor)
event.accept()
else:
super(GraphicsView, self).mouseReleaseEvent(event)
class Ui_Dialog(object):
def setupUi(self, Dialog):
Dialog.setObjectName("Dialog")
Dialog.setMinimumSize(800, 600)
Dialog.resize(1147, 840)
# Create a vertical layout for the main window
main_layout = QtWidgets.QVBoxLayout(Dialog)
# Create a horizontal layout for the buttons
button_layout = QtWidgets.QHBoxLayout()
main_layout.addLayout(button_layout)
# Create the upload button and add it to the button layout
self.uploadB = QtWidgets.QPushButton("upload")
self.uploadB.setObjectName("uploadB")
button_layout.addWidget(self.uploadB)
# Create a stretchable spacer and add it to the button layout
button_layout.addStretch()
# Create an input field and add it to the button layout
self.inputField = QtWidgets.QLineEdit()
self.inputField.setObjectName("inputField")
button_layout.addWidget(self.inputField)
# Create labels for the results and add them to the results layout
# Create a horizontal layout for the results
self.results_layout = QtWidgets.QHBoxLayout()
main_layout.addLayout(self.results_layout)
# Create labels for the results and add them to the results layout
self.results = {'Basophil':0, 'Eosinophil':0, 'Erythroblast':0, 'Ig':0, 'Lymphocyte':0, 'Monocyte':0, 'Neutrophil':0,'White Cells':0, 'Red Cells':0, 'platelets':0}
self.labels = {} # Dictionary to store the QLabel objects
i=0
for d in self.results:
result_label = QtWidgets.QLabel()
result_label.setObjectName(f"result{i+1}")
result_label.setText(f"{d} {self.results[d]}") # Set some initial text
self.results_layout.addWidget(result_label)
self.labels[d] = result_label # Store the QLabel object in self.labels
i+=1
# Create the extract_lymphocyte button and add it to the button layout
self.extract_lymphocyte = QtWidgets.QPushButton("extract_lymphocyte")
self.extract_lymphocyte.setObjectName("extract_lymphocyte")
button_layout.addWidget(self.extract_lymphocyte)
self.applypl = QtWidgets.QPushButton("pl")
self.applypl.setObjectName("applypl")
button_layout.addWidget(self.applypl)
# Create the apply button and add it to the button layout
self.applyred = QtWidgets.QPushButton("red")
self.applyred.setObjectName("applyb")
button_layout.addWidget(self.applyred)
# Create the apply button and add it to the button layout
self.applyb = QtWidgets.QPushButton("white")
self.applyb.setObjectName("applyb")
button_layout.addWidget(self.applyb)
# Create the QGraphicsView and add it to the main layout
self.graphicsView = GraphicsView()
main_layout.addWidget(self.graphicsView, stretch=3)
# Create a QGraphicsScene for the QGraphicsView
self.scene = QGraphicsScene()
self.graphicsView.setScene(self.scene)
self.graphicsViewly = GraphicsView()
main_layout.addWidget(self.graphicsViewly, stretch=1)
# Create a QGraphicsScene for the second QGraphicsView
self.scenely = QGraphicsScene()
self.graphicsViewly.setScene(self.scenely)
self.uploadB.clicked.connect(self.handle_upload_button_clicked)
self.extract_lymphocyte.clicked.connect(self.handle_extract_lymphocyte_button_clicked)
self.applyb.clicked.connect(self.handle_detect_button_clicked)
self.applyred.clicked.connect(self.handle_red_button_clicked)
self.applypl.clicked.connect(self.handle_pl_button_clicked)
def change_image(self, image_path):
# Create a QPixmap from the new image path
pixmap = QtGui.QPixmap(image_path)
# Clear the QGraphicsScene
self.scene.clear()
# Add the QPixmap to the QGraphicsScene
self.scene.addPixmap(pixmap)
# Fit the QGraphicsView to the scene's content
self.graphicsView.fitInView(self.scene.itemsBoundingRect(), QtCore.Qt.KeepAspectRatio)
def handle_upload_button_clicked(self):
global take_lymphocyte, yolo_img_resize
# Open a file dialog and get the selected image file path
file_path, _ = QtWidgets.QFileDialog.getOpenFileName(None, 'Select Image')
global upload_name
if file_path:
upload_name = os.path.basename(file_path)
self.change_image(file_path)
# Load the image into a QPixmap object
pixmap = QPixmap(file_path)
# Get the width and height
width = pixmap.width()
height = pixmap.height()
ma = max(width, height)
yolo_img_resize = max((ma // 640) *640 ,640)
#yolo_img_resize = max((ma // 384) *384 ,384)
#yolo_img_resize = (yolo_img_resize // 32) * 32 + (yolo_img_resize % 32 != 0) * 32
self.inputField.setText(str(yolo_img_resize))
# Define the destination folders
destination_folder = "cell_application/uploaded_images/"
source = file_path
destination = os.path.join(destination_folder, upload_name)
if os.path.normpath(source) != os.path.normpath(destination):
# Copy the file
shutil.copy(source, destination)
else:
# If source and destination are the same, delete and copy
if os.path.exists(destination):
os.remove(destination)
shutil.copy(source, destination)
# If the image is not a png or jpg make it jpg then save it
if not (file_path.lower().endswith(('.png', '.jpg' ))):
im = Image.open(file_path)
rgb_im = im.convert('RGB')
rgb_im.save(file_path[:-4] + 'jpg')
lb = ['Basophil', 'Eosinophil', 'Erythroblast', 'Ig', 'Lymphocyte', 'Monocyte', 'Neutrophil','White Cells', 'Red Cells', 'platelets']
for l in lb:
self.labels[l].setText(l+': 0')
def handle_detect_button_clicked(self):
global yolo_img_resize
yolo_img_resize = int(self.inputField.text())
global take_lymphocyte
image_path = "cell_application/uploaded_images/"+upload_name
print(upload_name)
model_path="models_weights/lastv7_aug_0.978_4.pt"
command = f"python ./models/yolov7/detect.py --source {image_path} --weights {model_path} --img {yolo_img_resize} --conf 0.5 --project {output_folder} --save-txt"
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)
process.wait()
if os.path.exists("cell_application/output/exp"):
if os.path.exists("cell_application/output/"+upload_name[0:upload_name.find('.')]):
shutil.rmtree("cell_application/output/"+upload_name[0:upload_name.find('.')])
os.rename("cell_application/output/exp","cell_application/output/"+upload_name[0:upload_name.find('.')])
image_out_path="cell_application/output/"+upload_name[0:upload_name.find('.')]+"/"+upload_name
take_lymphocyte=True
txt_file = glob.glob(os.path.join("cell_application/output/"+upload_name[0:upload_name.find('.')]+"/labels/", '*.txt'))[0]
df = pd.read_csv(txt_file,delimiter=' ', header=None)
df.columns = ['label', 'x_center', 'y_center', 'width', 'height']
# Count the appearance of each label in the DataFrame
label_counts = df['label'].value_counts()
# Map the label numbers to their names
label_names = {0: 'Basophil', 1: 'Eosinophil', 2: 'Erythroblast', 3: 'Ig', 4: 'Lymphocyte', 5: 'Monocyte', 6: 'Neutrophil'}
# Update the results dictionary with the counts
w=0
for label_number, label_name in label_names.items():
if label_number in label_counts:
self.labels[label_name].setText(label_name+": "+str(label_counts[label_number]))
w+=label_counts[label_number]
self.labels['White Cells'].setText('White Cells: '+str(w))
print(image_out_path)
self.change_image(image_out_path)
def handle_red_button_clicked(self):
img_size = int(self.inputField.text())
image_path = "cell_application/uploaded_images/"+upload_name
model_path="models_weights/bestv7_red.pt"
command = f"python ./models/yolov7/detect.py --source {image_path} --weights {model_path} --img {img_size} --conf 0.5 --project {output_red} --save-txt"
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)
process.wait()
if os.path.exists("cell_application/outred/exp"):
if os.path.exists("cell_application/outred/"+upload_name[0:upload_name.find('.')]):
shutil.rmtree("cell_application/outred/"+upload_name[0:upload_name.find('.')])
os.rename("cell_application/outred/exp","cell_application/outred/"+upload_name[0:upload_name.find('.')])
image_out_path="cell_application/outred/"+upload_name[0:upload_name.find('.')]+"/"+upload_name
txt_file = glob.glob(os.path.join("cell_application/outred/"+upload_name[0:upload_name.find('.')]+"/labels/", '*.txt'))[0]
df = pd.read_csv(txt_file,delimiter=' ', header=None)
df.columns = ['label', 'x_center', 'y_center', 'width', 'height']
self.labels['Red Cells'].setText('Red Cells: '+str(len(df)))
self.change_image(image_out_path)
def handle_pl_button_clicked(self):
img_size = int(self.inputField.text())
image_path = "cell_application/uploaded_images/"+upload_name
print(upload_name)
model_path="models_weights/bestv7_pl_640_3.pt"
command = f"python ./models/yolov7/detect.py --source {image_path} --weights {model_path} --img {img_size} --conf 0.5 --project {output_pl} --save-txt"
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)
process.wait()
if os.path.exists("cell_application/outpl/exp"):
if os.path.exists("cell_application/outpl/"+upload_name[0:upload_name.find('.')]):
shutil.rmtree("cell_application/outpl/"+upload_name[0:upload_name.find('.')])
os.rename("cell_application/outpl/exp","cell_application/outpl/"+upload_name[0:upload_name.find('.')])
image_out_path="cell_application/outpl/"+upload_name[0:upload_name.find('.')]+"/"+upload_name
txt_file = glob.glob(os.path.join("cell_application/outpl/"+upload_name[0:upload_name.find('.')]+"/labels/", '*.txt'))[0]
df = pd.read_csv(txt_file,delimiter=' ', header=None)
df.columns = ['label', 'x_center', 'y_center', 'width', 'height']
self.labels['platelets'].setText('platelets: '+str(len(df)))
self.change_image(image_out_path)
def handle_extract_lymphocyte_button_clicked(self):
global take_lymphocyte
def get_most_recently_modified_folder(rootDir):
# Create a list to store tuples of (folder_path, last_modified_time)
folders = [(os.path.join(rootDir, dir), os.path.getmtime(os.path.join(rootDir, dir)))
for dir in os.listdir(rootDir) if os.path.isdir(os.path.join(rootDir, dir))]
# Sort the list by last_modified_time
folders.sort(key=lambda x: x[1], reverse=True)
# The first element in the list is the most recently modified folder
most_recently_modified_folder = folders[0][0] if folders else None
return most_recently_modified_folder
if not take_lymphocyte:
msg = QMessageBox()
msg.setIcon(QMessageBox.Information)
msg.setText("You should make a detection for white blood cell first press White button.")
msg.setWindowTitle("Information")
msg.exec_()
else :
main_folder_path = "cell_application/output"
lastfolder_path=get_most_recently_modified_folder(main_folder_path)
txt_file = glob.glob(os.path.join(lastfolder_path+"/labels/", '*.txt'))[0]
df = pd.read_csv(txt_file,delimiter=' ', header=None)
df.columns = ['label', 'x_center', 'y_center', 'width', 'height']
df=df[df['label']==4]
imagename=txt_file[txt_file.rfind('\\')+1:txt_file.find('.')]
imagepath=os.path.join("cell_application/uploaded_images",imagename)
image = Image.open(imagepath+".jpg")
npimage=np.array(image)
# Get the original size of the image
ma=max(npimage.shape[0],npimage.shape[1])
yolo_img_resize= (ma*2144) //2592
yolo_img_resize=(yolo_img_resize//32)*32 +(yolo_img_resize%32!=0)*32
height, width = yolo_img_resize,yolo_img_resize
height_i, width_i=npimage.shape[:2]
height_scale = height_i/height
width_scale=width_i/width
df['x_center'] *= width_i
df['y_center'] *= height_i
df['width'] *= width_i
df['height'] *= height_i
# Calculate the top-left and bottom-right corners of the bounding boxes
df1 = pd.DataFrame()
df1['xmin'] = df['x_center'] - df['width'] / 2
df1['ymin'] = df['y_center'] - df['height'] / 2
df1['xmax'] = df['x_center'] + df['width'] / 2
df1['ymax'] = df['y_center'] + df['height'] / 2
new_box=[]
crop_dir = lastfolder_path+"/crop_results"
sam_dir = lastfolder_path+"/sam_results"
# Check if the directory already exists
if not os.path.exists(crop_dir):
# If not, create the directory
os.mkdir(crop_dir)
if not os.path.exists(sam_dir):
# If not, create the directory
os.mkdir(sam_dir)
boxes = [np.array(row) for row in df1.values]
for i in range(len(boxes)):
box =copy.copy(boxes[i])
padding = 70
box[0] = max(0, box[0] - padding)
box[1] = max(0, box[1] - padding)
box[2] = min(image.width, box[2] + padding)
box[3] = min(image.height, box[3] + padding)
# Crop the image using the bounding box coordinates
cropped_image1 = np.array(image.crop(boxes[i]))
cropped_image = image.crop(box)
cropped_image.save(f'{lastfolder_path}/crop_results/{imagename}{i}.jpg')
# Save the cropped image
# Calculate the new bounding box coordinates
new_box.append(np.array([ padding, padding, padding+cropped_image1.shape[1], padding+cropped_image1.shape[0]]))
box = new_box
import torch
CHECKPOINT_PATH="models_weights/sam_vit_h_4b8939.pth"
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
MODEL_TYPE = "vit_h"
import cv2
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
sam = sam_model_registry[MODEL_TYPE](checkpoint=CHECKPOINT_PATH)
mask_predictor = SamPredictor(sam)
mask_generator = SamAutomaticMaskGenerator(sam)
from keras.models import load_model
import cv2
import supervision as sv
# Load the model from the .h5 file
model = load_model('models_weights/EfficientNetB3-leukemia-0.96.h5')
i=-1
image_list=[]
cropimagespath=lastfolder_path+"/crop_results"
for file in os.listdir(cropimagespath):
i+=1
image_bgr = cv2.imread(os.path.join(cropimagespath,file))
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
mask_predictor.set_image(image_rgb)
masks, scores, logits = mask_predictor.predict(
box=new_box[i],
multimask_output=True
)
img=np.zeros(image_bgr.shape)
img[:,:,:]=[0,0,0]
img[masks[2,:,:]]=image_bgr[masks[2,:,:]]
#imgtostore=img.copy()
#cv2.resize(imgtostore,(300,300))
cv2.imwrite(f'{sam_dir}/{imagename}{i}.jpg',img)
annotated_image = img.astype(np.uint8)
"""sam_result = mask_generator.generate(img)
mask_annotator = sv.MaskAnnotator()
detections = sv.Detections.from_sam(sam_result=sam_result)
annotated_image = mask_annotator.annotate(scene=img.copy(), detections=detections)
print("ok2")"""
img_size_ly = (300, 300)
def evaluate(model ,img):
img = cv2.resize(img, img_size_ly)
img = np.expand_dims(img, axis=0)
# now predict the image
pred = model.predict(img,verbose=0)
print('the shape of prediction is ', pred.shape)
print(pred)
index = np.argmax(pred[0])
return index
image_list.append([(evaluate(model,annotated_image)),f'{sam_dir}/{imagename}{i}.jpg'])
print(image_list)
x_offset = 0
label_dict = {0: "all", 1: "hem"}
for image_info in image_list:
label_number, image_path = image_info
label = label_dict[label_number]
pixmap = QtGui.QPixmap(image_path)
# Scale the pixmap without preserving aspect ratio
scaled_pixmap = pixmap.scaled(300, 300)
item = QtWidgets.QGraphicsPixmapItem(scaled_pixmap)
item.setPos(x_offset, 0)
self.scenely.addItem(item)
# Create a QGraphicsTextItem for the label
text_item = QtWidgets.QGraphicsTextItem(label)
# Set the color of the text to white
text_item.setDefaultTextColor(QtGui.QColor('white'))
# Calculate the center position of the image for x-coordinate
center_x = x_offset + scaled_pixmap.width() / 2 - text_item.boundingRect().width() / 2
# Set the position of the text item on the image and centered horizontally
text_item.setPos(center_x, scaled_pixmap.height() / 2)
self.scenely.addItem(text_item)
# Update x offset for next image
x_offset += scaled_pixmap.width()
if __name__ == "__main__":
import sys
upload_name = ""
yolo_img_resize=1216
lastfolder_path=""
take_lymphocyte=False
app = QtWidgets.QApplication(sys.argv)
Dialog = QtWidgets.QDialog()
ui = Ui_Dialog()
ui.setupUi(Dialog)
# Add a maximize button to the window
Dialog.setWindowFlag(QtCore.Qt.WindowMaximizeButtonHint, True)
Dialog.show()
sys.exit(app.exec_())