Switch to unified view

a/README.md b/README.md
1
<h2 align="center"> Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis<h2>
1
<h2 align="center"> Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis<h2>
2
2
3
3
## Dataset
4
## Dataset
4
5
6
5
The [```White-Blood-Cell-Detection-Dataset```](https://github.com/medmabcf/White-Blood-Cell-Detection-Dataset) has been used for automatic identification and counting of white blood cell types. (It has been modified and augmented) . Download the dataset, unzip and put
7
The [```White-Blood-Cell-Detection-Dataset```](https://github.com/medmabcf/White-Blood-Cell-Detection-Dataset) has been used for automatic identification and counting of white blood cell types. (It has been modified and augmented) . Download the dataset, unzip and put
6
the ```Training```, ```Testing```, and ```Validation```folders in the working directory.
8
the ```Training```, ```Testing```, and ```Validation```folders in the working directory.
7
9
8
10
9
## Requirements
11
## Requirements
10
12
11
Follow these steps to set up your environment:
13
Follow these steps to set up your environment:
12
14
13
1. **Clone the YOLOv7 model:**
15
1. **Clone the YOLOv7 model:**
14
    ```shell
16
    ```shell
15
    Remove-Item -Path models\yolov7 -Recurse -Force
17
    Remove-Item -Path models\yolov7 -Recurse -Force
16
    git clone https://github.com/WongKinYiu/yolov7.git models\yolov7
18
    git clone https://github.com/WongKinYiu/yolov7.git models\yolov7
17
    ```
19
    ```
18
20
19
2. **Clone the Segment Anything model:**
21
2. **Clone the Segment Anything model:**
20
    ```shell
22
    ```shell
21
    Remove-Item -Path models\segment-anything -Recurse -Force
23
    Remove-Item -Path models\segment-anything -Recurse -Force
22
    git clone https://github.com/facebookresearch/segment-anything.git  models\segment-anything
24
    git clone https://github.com/facebookresearch/segment-anything.git  models\segment-anything
23
    ```
25
    ```
24
26
25
3. **Install the required Python packages:**
27
3. **Install the required Python packages:**
26
    ```shell
28
    ```shell
27
    pip install -r requirements.txt
29
    pip install -r requirements.txt
28
    ```
30
    ```
29
31
30
After you've classified the white blood cells, if you want to extract lymphocyte cells and check if the cell is normal or abnormal (acute leukemia blast), you should download the Segment Anything Model (SAM) weights by running the following command:
32
After you've classified the white blood cells, if you want to extract lymphocyte cells and check if the cell is normal or abnormal (acute leukemia blast), you should download the Segment Anything Model (SAM) weights by running the following command:
31
33
32
```shell
34
```shell
33
python Download_sam_weights
35
python Download_sam_weights
34
```
36
```
35
## Getting Started 
37
## Getting Started 
36
38
37
39
38
1. Run detectcell.py 
40
1. Run detectcell.py 
39
```python detectcell.py```
41
```python detectcell.py```
40
42
41
43
42
44
43
## How to Run the Code  :runner:
45
## How to Run the Code  :runner:
44
46
45
47
46
48
47
49
48
50
49
## Blood Cell Detection Output
51
## Blood Cell Detection Output
50
52
51
53
52
  <p align="center">
54
  <p align="center">
53
  <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/output/Im022_1/Im022_1.jpg" width="500">
55
  <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/output/Im022_1/Im022_1.jpg?raw=true" width="500">
54
    
56
    
55
  <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/output/Im043_0/Im043_0.jpg" width="500">
57
  <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/output/Im043_0/Im043_0.jpg?raw=true" width="500">
56
  <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/output/Im080_0/Im080_0.jpg" width="500">
58
  <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/output/Im080_0/Im080_0.jpg?raw=true" width="500">
57
   <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/output/Im079_0/Im079_0.jpg" width="500">
59
   <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/output/Im079_0/Im079_0.jpg?raw=true" width="500">
58
   
60
   
59
   <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/output/Im076_0/Im076_0.jpg" width="500">
61
   <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/output/Im076_0/Im076_0.jpg?raw=true" width="500">
60
62
61
   <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/outred/Im076_0/Im076_0.jpg" width="500">
63
   <img src="https://github.com/medmabcf/Automated-Leukemia-Detection-using-YOLO-based-Blood-Cell-Analysis/blob/main/cell_application/outred/Im076_0/Im076_0.jpg?raw=true" width="500">
62
   
64
   
63
</p>
65
</p>
64
66
65
67
66
68
67
69