[f757a9]: / Classifier / Classes / Data.py

Download this file

78 lines (62 with data), 2.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#############################################################################################
#
# Project: Mascot Defense Research Project
# Repository: ALL Detection System 2020
# Project: AllDS2020 Classifier
#
# Author: Allen Akhaumere
# Contributors:
# Title: Data Class
# Description: Data class for the Acute Lymphoblastic Leukemia Pytorch CNN Classifier
# ALL Classifier.
# License: MIT License
# Last Modified: 2020-07-23
#
############################################################################################
import os
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms, datasets
class LeukemiaDataset(Dataset):
"""
Acute Lymphoblastic Leukemia Dataset Reader.
Args:
df_data: Dataframe for CSV file
data_dir: path to Lymphoblastic Leukemia Data
transform: transforms for performing data augmentation
"""
def __init__(self, df_data, data_dir='./', transform=None):
super().__init__()
self.df = df_data.values
self.data_dir = data_dir
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, index):
img_name, label = self.df[index]
img_path = os.path.join(self.data_dir, img_name + '.jpg')
image = Image.open(img_path)
if self.transform is not None:
image = self.transform(image)
return image, label
def augmentation():
"""Acute Lymphoblastic Leukemia data augmentation"""
mean, std_dev = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
training_transforms = transforms.Compose([transforms.Resize((100, 100)),
transforms.RandomRotation(30),
transforms.RandomResizedCrop(100),
transforms.RandomHorizontalFlip(),
transforms.RandomGrayscale(p=0.1),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std_dev)])
validation_transforms = transforms.Compose([
transforms.Resize((100, 100)),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std_dev)])
return training_transforms, validation_transforms
# Load the datasets with ImageFolder
def load_datasets(train_dir, training_transforms, valid_dir, validation_transforms):
""" """
training_dataset = datasets.ImageFolder(train_dir, transform=training_transforms)
validation_dataset = datasets.ImageFolder(valid_dir, transform=validation_transforms)
return training_dataset, validation_dataset