|
a |
|
b/Classifier/Classes/utils.py |
|
|
1 |
import csv |
|
|
2 |
import os |
|
|
3 |
import numpy as np |
|
|
4 |
import pandas as pd |
|
|
5 |
from sklearn.metrics import roc_auc_score, accuracy_score |
|
|
6 |
import torch |
|
|
7 |
from sklearn.metrics import confusion_matrix |
|
|
8 |
from sklearn import metrics |
|
|
9 |
import seaborn as sns |
|
|
10 |
import matplotlib.pyplot as plt |
|
|
11 |
|
|
|
12 |
|
|
|
13 |
|
|
|
14 |
|
|
|
15 |
def image_to_csv(file_path, save_path, mode=""): |
|
|
16 |
|
|
|
17 |
""" |
|
|
18 |
Create CSV from Acute Lymphoblastic Leukemia dataset |
|
|
19 |
Args: |
|
|
20 |
file_path: Acute Lymphoblastic Leukemia data path |
|
|
21 |
save_path: path to save the created CSV |
|
|
22 |
mode: |
|
|
23 |
""" |
|
|
24 |
|
|
|
25 |
columns = ['data', 'label'] |
|
|
26 |
csv_data = "" |
|
|
27 |
imagefiles = list() # create a list to store image names |
|
|
28 |
if mode == "train": |
|
|
29 |
csv_data = "train.csv" |
|
|
30 |
if mode == "test": |
|
|
31 |
csv_data = "test.csv" |
|
|
32 |
|
|
|
33 |
with open(os.path.join(save_path, csv_data), 'w', newline='') as csvfile: |
|
|
34 |
for root, dirs, files in os.walk(file_path): #scan through the file path |
|
|
35 |
for file in files: # loop through all files |
|
|
36 |
if '.tif' or '.jpg' or '.png' in file: #chech if there are files with *.tif, *.jpg or *.png |
|
|
37 |
imagefiles.append(os.path.splitext(file)[0])#retrieve file names and add to imagefiles list |
|
|
38 |
|
|
|
39 |
writer = csv.writer(csvfile, dialect='excel') # Create a writer from csv module |
|
|
40 |
writer.writerow(columns)#write down the columns |
|
|
41 |
for image in imagefiles:# loop through all image names in the imagefiles list |
|
|
42 |
label = os.path.basename(image) |
|
|
43 |
if "_0" in label: |
|
|
44 |
label = 0 |
|
|
45 |
elif "_1" in label: |
|
|
46 |
label = 1 |
|
|
47 |
|
|
|
48 |
writer.writerow([image, label]) |
|
|
49 |
print("done") |
|
|
50 |
|
|
|
51 |
|
|
|
52 |
|
|
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
|
56 |
def print_accuracy_and_classification_report(labels, prediction): |
|
|
57 |
"""Print model accuracy and classification report. |
|
|
58 |
|
|
|
59 |
Args: |
|
|
60 |
labels (numpy.array): Truth label |
|
|
61 |
prediction (numpy.array): Model predictions |
|
|
62 |
""" |
|
|
63 |
print('Cross validation accuracy:') |
|
|
64 |
print('\t', metrics.accuracy_score(labels, prediction)) |
|
|
65 |
print('\nCross validation classification report\n') |
|
|
66 |
print(metrics.classification_report(labels, prediction)) |
|
|
67 |
|
|
|
68 |
|
|
|
69 |
|
|
|
70 |
def f1_loss(y_true: torch.Tensor, y_pred: torch.Tensor, is_training=False) -> torch.Tensor: |
|
|
71 |
'''Calculate F1 score. Can work with gpu tensors |
|
|
72 |
|
|
|
73 |
The original implmentation is written by Michal Haltuf on Kaggle. |
|
|
74 |
|
|
|
75 |
Returns |
|
|
76 |
------- |
|
|
77 |
torch.Tensor |
|
|
78 |
`ndim` == 1. 0 <= val <= 1 |
|
|
79 |
|
|
|
80 |
Reference |
|
|
81 |
--------- |
|
|
82 |
- https://www.kaggle.com/rejpalcz/best-loss-function-for-f1-score-metric |
|
|
83 |
- https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score |
|
|
84 |
- https://discuss.pytorch.org/t/calculating-precision-recall-and-f1-score-in-case-of-multi-label-classification/28265/6 |
|
|
85 |
|
|
|
86 |
''' |
|
|
87 |
assert y_true.ndim == 1 |
|
|
88 |
assert y_pred.ndim == 1 or y_pred.ndim == 2 |
|
|
89 |
|
|
|
90 |
if y_pred.ndim == 2: |
|
|
91 |
y_pred = y_pred.argmax(dim=1) |
|
|
92 |
|
|
|
93 |
tp = (y_true * y_pred).sum().to(torch.float32) |
|
|
94 |
tn = ((1 - y_true) * (1 - y_pred)).sum().to(torch.float32) |
|
|
95 |
fp = ((1 - y_true) * y_pred).sum().to(torch.float32) |
|
|
96 |
fn = (y_true * (1 - y_pred)).sum().to(torch.float32) |
|
|
97 |
|
|
|
98 |
epsilon = 1e-7 |
|
|
99 |
|
|
|
100 |
precision = tp / (tp + fp + epsilon) |
|
|
101 |
recall = tp / (tp + fn + epsilon) |
|
|
102 |
|
|
|
103 |
f1 = 2 * (precision * recall) / (precision + recall + epsilon) |
|
|
104 |
f1.requires_grad = is_training |
|
|
105 |
return f1 |
|
|
106 |
|
|
|
107 |
|
|
|
108 |
def sigmoid(x): |
|
|
109 |
return 1.0 / (1.0 + np.exp(-x)) |
|
|
110 |
|
|
|
111 |
|
|
|
112 |
def accuracy_mini_batch(predicted, true, i, acc, tpr, tnr): |
|
|
113 |
predicted = predicted.cpu() |
|
|
114 |
true = true.cpu() |
|
|
115 |
|
|
|
116 |
predicted = (sigmoid(predicted.data.numpy()) > 0.5) |
|
|
117 |
true = true.data.numpy() |
|
|
118 |
|
|
|
119 |
accuracy = np.sum(predicted == true) / true.shape[0] |
|
|
120 |
true_positive_rate = np.sum((predicted == 1) * (true == 1)) / np.sum(true == 1) |
|
|
121 |
true_negative_rate = np.sum((predicted == 0) * (true == 0)) / np.sum(true == 0) |
|
|
122 |
acc = acc * (i) / (i + 1) + accuracy / (i + 1) |
|
|
123 |
tpr = tpr * (i) / (i + 1) + true_positive_rate / (i + 1) |
|
|
124 |
tnr = tnr * (i) / (i + 1) + true_negative_rate / (i + 1) |
|
|
125 |
|
|
|
126 |
return acc, tpr, tnr |
|
|
127 |
|
|
|
128 |
|
|
|
129 |
def accuracy(predicted, true): |
|
|
130 |
predicted = predicted.cpu() |
|
|
131 |
true = true.cpu() |
|
|
132 |
|
|
|
133 |
predicted = (sigmoid(predicted.data.numpy()) > 0.5) |
|
|
134 |
true = true.data.numpy() |
|
|
135 |
|
|
|
136 |
accuracy = np.sum(predicted == true) / true.shape[0] |
|
|
137 |
true_positive_rate = np.sum((predicted == 1) * (true == 1)) / np.sum(true == 1) |
|
|
138 |
true_negative_rate = np.sum((predicted == 0) * (true == 0)) / np.sum(true == 0) |
|
|
139 |
|
|
|
140 |
return accuracy, true_positive_rate, true_negative_rate |
|
|
141 |
|
|
|
142 |
|
|
|
143 |
def model_confusion_matrix(y_true, y_pred, classes=[]): |
|
|
144 |
|
|
|
145 |
cm = confusion_matrix(y_true=y_true, y_pred=y_pred) |
|
|
146 |
df_cm = pd.DataFrame(cm, index=classes, columns=classes) |
|
|
147 |
hmap = sns.heatmap(df_cm, annot=True, fmt='d') |
|
|
148 |
hmap.yaxis.set_ticklabels(hmap.yaxis.get_ticklabels(), rotation=0, ha='right') |
|
|
149 |
hmap.xaxis.set_ticklabels(hmap.xaxis.get_ticklabels(), rotation=30, ha='right') |
|
|
150 |
plt.ylabel('True Label') |
|
|
151 |
plt.xlabel('Predicted label') |
|
|
152 |
plt.show() |
|
|
153 |
|
|
|
154 |
|
|
|
155 |
|
|
|
156 |
|
|
|
157 |
|
|
|
158 |
|
|
|
159 |
|
|
|
160 |
|
|
|
161 |
|