|
a |
|
b/inspection.py |
|
|
1 |
import cv2 as cv |
|
|
2 |
import numpy as np |
|
|
3 |
from matplotlib import pyplot as plt |
|
|
4 |
from statistics import stdev |
|
|
5 |
from pathlib import Path |
|
|
6 |
import datetime |
|
|
7 |
|
|
|
8 |
class Rectangle: |
|
|
9 |
def __init__(self, x1, y1, w1, h1): |
|
|
10 |
self.x = x1 |
|
|
11 |
self.y = y1 |
|
|
12 |
self.w = w1 |
|
|
13 |
self.h = h1 |
|
|
14 |
self.is_surface_breaking=True |
|
|
15 |
self.is_acceptable=True |
|
|
16 |
|
|
|
17 |
def __repr__(self): |
|
|
18 |
return "("+str(self.x)+","+str(self.y)+"),"+str(self.w)+"x"+str(self.h)\ |
|
|
19 |
+ ", Surface: " + str(self.is_surface_breaking)+", Acceptance: "+str(self.is_acceptable) |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
def nothing(x): |
|
|
23 |
print("Nothing:"+str(x)) |
|
|
24 |
|
|
|
25 |
|
|
|
26 |
def is_inside_joint(inner: Rectangle, outer: Rectangle) -> bool: |
|
|
27 |
if(inner.x >= outer.x and inner.y >= outer.y and |
|
|
28 |
(inner.x+inner.w) <= (outer.x+outer.w) and (inner.y+inner.h) <= (outer.y+outer.h)): |
|
|
29 |
return True |
|
|
30 |
else: |
|
|
31 |
return False |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
def error_return(): |
|
|
35 |
return 0, 0, 0, 0, 0, 0, 0 |
|
|
36 |
|
|
|
37 |
|
|
|
38 |
def find_smallest_rec(all_rec): |
|
|
39 |
|
|
|
40 |
smallest = all_rec[0] |
|
|
41 |
for rec in all_rec: |
|
|
42 |
if rec.w*rec.h < smallest.w*smallest.h: |
|
|
43 |
smallest = rec |
|
|
44 |
return smallest |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
def discard_irrelevant_results(all_recs): |
|
|
48 |
rec_fields = [] |
|
|
49 |
rec_relevant = [] |
|
|
50 |
sum_fields = 0 |
|
|
51 |
for rec in all_recs: |
|
|
52 |
sum_fields += rec.w*rec.h |
|
|
53 |
average_field = sum_fields/len(all_recs) |
|
|
54 |
# for rec in all_recs: |
|
|
55 |
# if rec.w * rec.h > average_field: |
|
|
56 |
# rec_fields.append(rec.w*rec.h) |
|
|
57 |
# rec_relevant.append(Rectangle(rec.x,rec.y,rec.w,rec.h)) |
|
|
58 |
for rec in all_recs: |
|
|
59 |
rec_fields.append(rec.w * rec.h) |
|
|
60 |
|
|
|
61 |
all_recs.remove(find_smallest_rec(all_recs)) |
|
|
62 |
deviation = stdev(rec_fields) |
|
|
63 |
while deviation/average_field >= 0.85 and len(all_recs) > 1: |
|
|
64 |
# print("dev/mean: "+str(deviation/average_field)+" dev: "+str(deviation)+" mean: "+str(average_field)) |
|
|
65 |
all_recs.remove(find_smallest_rec(all_recs)) |
|
|
66 |
for rec in all_recs: |
|
|
67 |
sum_fields += rec.w*rec.h |
|
|
68 |
rec_fields.append(rec.w*rec.h) |
|
|
69 |
average_field = sum_fields / len(all_recs) |
|
|
70 |
deviation = stdev(rec_fields) |
|
|
71 |
# print("dev/mean: " + str(deviation / average_field) + " dev: " + str(deviation) + " mean: " + str(average_field)) |
|
|
72 |
# plt.hist(rec_fields, rwidth=5) |
|
|
73 |
# plt.title("Average field: "+str(average_field)+"\nIndications: "+str(len(rec_fields))) |
|
|
74 |
# plt.show() |
|
|
75 |
return all_recs |
|
|
76 |
|
|
|
77 |
# def check_histograms(img, rec, roi): |
|
|
78 |
# k=45 |
|
|
79 |
# #pobieram wymiary obrazu |
|
|
80 |
# ref_up = cv.imread("images\\ref_up.png") |
|
|
81 |
# ref_down = cv.imread("images\\ref_down.png") |
|
|
82 |
# #przycinam obrazy do mierzenia histogramów |
|
|
83 |
# indication_surface_down = img[roi.y+roi.h:roi.y+roi.h+k, rec.x:rec.x+rec.w] |
|
|
84 |
# indication_surface_up = img[roi.y-k:roi.y, rec.x:rec.x+rec.w] #górna część obrazu oobcięta SZTYWNO |
|
|
85 |
# #liczę histogramy |
|
|
86 |
# hist_indication_surface_down = cv.calcHist([indication_surface_down], [0], None, [256], [0,256]) |
|
|
87 |
# hist_indication_surface_up = cv.calcHist([indication_surface_up], [0], None, [256], [0,256]) |
|
|
88 |
# hist_surface_down = cv.calcHist([ref_down], [0], None, [256], [0,256]) |
|
|
89 |
# hist_surface_up = cv.calcHist([ref_up], [0], None, [256], [0,256]) |
|
|
90 |
# #porównuję histogramy |
|
|
91 |
# check_up = cv.compareHist(hist_surface_up, hist_indication_surface_up, cv.HISTCMP_CORREL) |
|
|
92 |
# check_down = cv.compareHist(hist_surface_down, hist_indication_surface_down, cv.HISTCMP_CORREL) |
|
|
93 |
# #zwracam poprawione prostokąty zależnie od histogramu |
|
|
94 |
# # if check_down<check_up and check_down<0.92: |
|
|
95 |
# # corrected_rect = [(rec.x,rec.y),(rec.x+rec.w,roi.y+roi.h+k)] |
|
|
96 |
# # elif check_up<check_down and check_up<0.92: |
|
|
97 |
# # corrected_rect = [(rec.x,roi.y-k),(rec.x+rec.w,rec.y+rec.h)] |
|
|
98 |
# # else: |
|
|
99 |
# # corrected_rect = [(rec.x,rec.y),(rec.x+rec.w,rec.y+rec.h)] |
|
|
100 |
# if check_down<check_up and check_down<0.15: |
|
|
101 |
# corrected_rect = Rectangle(rec.x, rec.y, rec.w, roi.y+roi.h+k-rec.y) |
|
|
102 |
# corrected_rect.is_surface_breaking=True |
|
|
103 |
# elif check_up<check_down and check_up<=0.15: |
|
|
104 |
# corrected_rect = Rectangle(rec.x, roi.y-k, rec.w, rec.y-roi.y+rec.h+k) |
|
|
105 |
# corrected_rect.is_surface_breaking=True |
|
|
106 |
# # [(rec.x,roi.y-k),(rec.x+rec.w,rec.y+rec.h)] |
|
|
107 |
# else: |
|
|
108 |
# corrected_rect = Rectangle(rec.x,rec.y,rec.w,rec.h) |
|
|
109 |
# print("Input rec: "+str(rec)) |
|
|
110 |
# print("Check down: " + str(check_down) + "\nCheck up: " + str(check_up)) |
|
|
111 |
# print(corrected_rect) |
|
|
112 |
# |
|
|
113 |
# return corrected_rect |
|
|
114 |
|
|
|
115 |
|
|
|
116 |
def check_histograms(img, rec, roi): |
|
|
117 |
k = 20 # wysokość fali powierzchniowej |
|
|
118 |
|
|
|
119 |
# pobieram wymiary obrazu |
|
|
120 |
height, width, channels = img.shape |
|
|
121 |
# przycinam obrazy do mierzenia histogramów |
|
|
122 |
indication_surface_down = img[roi.y+roi.h:roi.y+roi.h+k, rec.x:rec.x+rec.w] |
|
|
123 |
indication_surface_up = img[roi.y-k:roi.y, rec.x:rec.x+rec.w] |
|
|
124 |
surface_down = img[roi.y+roi.h:roi.y+roi.h+k, roi.x:width] |
|
|
125 |
surface_up = img[roi.y-k:roi.y, roi.x:width] |
|
|
126 |
# liczę histogramy |
|
|
127 |
hist_indication_surface_down = cv.calcHist([indication_surface_down], [0], None, [256], [0,256]) |
|
|
128 |
hist_indication_surface_up = cv.calcHist([indication_surface_up], [0], None, [256], [0,256]) |
|
|
129 |
hist_surface_down = cv.calcHist([surface_down], [0], None, [256], [0,256]) |
|
|
130 |
hist_surface_up = cv.calcHist([surface_up], [0], None, [256], [0,256]) |
|
|
131 |
# porównuję histogramy |
|
|
132 |
check_up = cv.compareHist(hist_surface_up, hist_indication_surface_up, cv.HISTCMP_CORREL) |
|
|
133 |
check_down = cv.compareHist(hist_surface_down, hist_indication_surface_down, cv.HISTCMP_CORREL) |
|
|
134 |
# zwracam poprawione prostokąty zależnie od histogramu |
|
|
135 |
# if check_down<check_up and check_down<0.92: |
|
|
136 |
# corrected_rect = [(rec.x,rec.y),(rec.x+rec.w,roi.y+roi.h+k)] |
|
|
137 |
# elif check_up<check_down and check_up<0.92: |
|
|
138 |
# corrected_rect = [(rec.x,roi.y-k),(rec.x+rec.w,rec.y+rec.h)] |
|
|
139 |
# else: |
|
|
140 |
# corrected_rect = [(rec.x,rec.y),(rec.x+rec.w,rec.y+rec.h)] |
|
|
141 |
if check_down<check_up and check_down < 0.9: |
|
|
142 |
corrected_rect = Rectangle(rec.x, rec.y, rec.w, roi.y+roi.h+k-rec.y) |
|
|
143 |
corrected_rect.is_surface_breaking=True |
|
|
144 |
elif check_up<check_down and check_up <= 0.9: |
|
|
145 |
corrected_rect = Rectangle(rec.x, roi.y-k, rec.w, rec.y-roi.y+rec.h+k) |
|
|
146 |
corrected_rect.is_surface_breaking = True |
|
|
147 |
# [(rec.x,roi.y-k),(rec.x+rec.w,rec.y+rec.h)] |
|
|
148 |
else: |
|
|
149 |
corrected_rect = Rectangle(rec.x,rec.y,rec.w,rec.h) |
|
|
150 |
print("Input rec: "+str(rec)) |
|
|
151 |
print("Check down: " + str(check_down) + "\nCheck up: " + str(check_up)) |
|
|
152 |
print(corrected_rect) |
|
|
153 |
|
|
|
154 |
return corrected_rect |
|
|
155 |
|
|
|
156 |
|
|
|
157 |
def display_process(images): |
|
|
158 |
# titles = ['ORIGINAL', 'FILTER', 'CANNY', 'DILATE', 'CONTOURS'] |
|
|
159 |
# for i in range(5): |
|
|
160 |
# plt.subplot(3, 2, i+1) |
|
|
161 |
# plt.imshow(images[i], 'gray') |
|
|
162 |
# plt.title(titles[i]) |
|
|
163 |
# plt.xticks([]) |
|
|
164 |
# plt.yticks([]) |
|
|
165 |
# plt.show() |
|
|
166 |
plt.subplot(1, 2, 1) |
|
|
167 |
plt.imshow(images[1], 'gray') |
|
|
168 |
plt.title('FILTER') |
|
|
169 |
plt.xticks([]) |
|
|
170 |
plt.yticks([]) |
|
|
171 |
plt.subplot(1,2,2) |
|
|
172 |
plt.imshow(images[2], 'gray') |
|
|
173 |
plt.title('EDGES') |
|
|
174 |
plt.xticks([]) |
|
|
175 |
plt.yticks([]) |
|
|
176 |
plt.show() |
|
|
177 |
|
|
|
178 |
|
|
|
179 |
def find_roi(filename): |
|
|
180 |
|
|
|
181 |
thresh1 = 100 |
|
|
182 |
thresh2 = 255 |
|
|
183 |
dil_kernel_size = 7 |
|
|
184 |
dil_it = 3 |
|
|
185 |
filter_kernel = 5 |
|
|
186 |
|
|
|
187 |
roi_img = cv.imread(filename) |
|
|
188 |
roi_imgray = cv.cvtColor(roi_img, cv.COLOR_BGR2GRAY) |
|
|
189 |
roi_imgray=cv.GaussianBlur(roi_imgray,(filter_kernel,filter_kernel),0) |
|
|
190 |
_, roi_imthresh = cv.threshold(roi_imgray, thresh1, thresh2, cv.THRESH_BINARY_INV) |
|
|
191 |
roi_kernel = np.ones((dil_kernel_size, dil_kernel_size), np.uint8) |
|
|
192 |
roi_imdil = cv.dilate(roi_imthresh, roi_kernel, iterations=dil_it) |
|
|
193 |
|
|
|
194 |
h, w, c = roi_img.shape |
|
|
195 |
roi_mat_img = np.transpose(roi_imdil) |
|
|
196 |
first_column = roi_mat_img[0] |
|
|
197 |
|
|
|
198 |
for i in range(len(first_column)): |
|
|
199 |
if i == len(first_column)-1: |
|
|
200 |
y_min = 0 |
|
|
201 |
y_max = len(first_column)-1 |
|
|
202 |
break |
|
|
203 |
if first_column[i] == 255 and first_column[i + 1] == 0 and i > 10: |
|
|
204 |
y_min = i |
|
|
205 |
break |
|
|
206 |
|
|
|
207 |
for j in range(i, len(first_column) - 1): |
|
|
208 |
if first_column[j] == 0 and first_column[j + 1] == 255 and j - y_min > 50: |
|
|
209 |
y_max = j |
|
|
210 |
break |
|
|
211 |
|
|
|
212 |
roi = Rectangle(0, y_min, w, y_max-y_min) |
|
|
213 |
return roi |
|
|
214 |
|
|
|
215 |
|
|
|
216 |
def convert_to_mm(roi, thickness, all_recs): |
|
|
217 |
px_to_mm = int(thickness)/(roi.h+60) |
|
|
218 |
all_recs_in_mm = [] |
|
|
219 |
for rec in all_recs: |
|
|
220 |
rec_in_mm = Rectangle(round(rec.x*px_to_mm, 1), round(rec.y*px_to_mm, 1), |
|
|
221 |
round(rec.w*px_to_mm, 1), round(rec.h*px_to_mm, 1)) |
|
|
222 |
all_recs_in_mm.append(rec_in_mm) |
|
|
223 |
|
|
|
224 |
x_max = 0; y_max = 0; w_max = 0; h_max = 0 |
|
|
225 |
|
|
|
226 |
for rec in all_recs_in_mm: |
|
|
227 |
if rec.w * rec.h > w_max * h_max: |
|
|
228 |
x_max = rec.x |
|
|
229 |
y_max = rec.y |
|
|
230 |
w_max = rec.w |
|
|
231 |
h_max = rec.h |
|
|
232 |
|
|
|
233 |
return x_max, y_max, w_max, h_max, all_recs_in_mm |
|
|
234 |
|
|
|
235 |
|
|
|
236 |
def confirm_indications(all_indications, acceptance_level, thickness): |
|
|
237 |
joint_acceptance = True |
|
|
238 |
if acceptance_level == 1: |
|
|
239 |
l_max = 0.75*float(thickness) |
|
|
240 |
h3 = 1.5 |
|
|
241 |
h2 = 2 |
|
|
242 |
h1 = 1 |
|
|
243 |
elif acceptance_level == 2: |
|
|
244 |
l_max = thickness |
|
|
245 |
h3 = 2 |
|
|
246 |
h2 = 2 |
|
|
247 |
h1 = 1 |
|
|
248 |
elif acceptance_level == 3: |
|
|
249 |
l_max = min(1.5*thickness, 20) |
|
|
250 |
h3 = 2 |
|
|
251 |
h2 = 2 |
|
|
252 |
h1 = 1 |
|
|
253 |
|
|
|
254 |
for ind in all_indications: |
|
|
255 |
if ind.w > l_max and ind.h > h1: |
|
|
256 |
ind.is_acceptable = False |
|
|
257 |
joint_acceptance = False |
|
|
258 |
elif ind.w <= l_max: |
|
|
259 |
if ind.is_surface_breaking and ind.h > h3: |
|
|
260 |
ind.is_acceptable = False |
|
|
261 |
joint_acceptance = False |
|
|
262 |
elif not ind.is_surface_breaking and ind.h > h2: |
|
|
263 |
ind.is_acceptable = False |
|
|
264 |
joint_acceptance = False |
|
|
265 |
elif ind.h < h2 or ind.h < h3: |
|
|
266 |
if ind.w > l_max: |
|
|
267 |
ind.is_acceptable = False |
|
|
268 |
joint_acceptance = False |
|
|
269 |
|
|
|
270 |
for ind in all_indications: |
|
|
271 |
print(ind) |
|
|
272 |
|
|
|
273 |
date = datetime.date.today() |
|
|
274 |
time = datetime.datetime.now().time() |
|
|
275 |
|
|
|
276 |
with open(str(date) + "_" + str(time).replace(':', '_')[:-8] + "_results.txt", "w") as f: |
|
|
277 |
i = 0 |
|
|
278 |
for rec in all_indications: |
|
|
279 |
f.write("Pattern " + str(i) + ": x0 = " + str(rec.x) + "; y0 = " + str(rec.y) + "; w = " |
|
|
280 |
+ str(rec.w) + "; h = " + str(rec.h) + "; " + str(rec.is_acceptable) + "\n") |
|
|
281 |
i += 1 |
|
|
282 |
|
|
|
283 |
return joint_acceptance |
|
|
284 |
|
|
|
285 |
|
|
|
286 |
def inspect(filepath, list_of_parameters, acceptance_level, thickness): |
|
|
287 |
try: |
|
|
288 |
filter_size=list_of_parameters[0] |
|
|
289 |
canny_min=list_of_parameters[1] |
|
|
290 |
canny_max=list_of_parameters[2] |
|
|
291 |
dilation_kernel_size=list_of_parameters[3] |
|
|
292 |
dilation_it=list_of_parameters[4] |
|
|
293 |
roi_x_min=list_of_parameters[5] |
|
|
294 |
roi_x_max=list_of_parameters[6] |
|
|
295 |
roi_y_min=list_of_parameters[7] |
|
|
296 |
roi_y_max=list_of_parameters[8] |
|
|
297 |
|
|
|
298 |
except IndexError: |
|
|
299 |
filter_size = 9 |
|
|
300 |
canny_min = 20 |
|
|
301 |
canny_max = 77 |
|
|
302 |
dilation_kernel_size = 3 |
|
|
303 |
dilation_it = 3 |
|
|
304 |
roi_x_min = -1 |
|
|
305 |
roi_x_max = -1 |
|
|
306 |
roi_y_min = -1 |
|
|
307 |
roi_y_max = -1 |
|
|
308 |
|
|
|
309 |
try_file = cv.imread(filepath) |
|
|
310 |
try: |
|
|
311 |
try_file.size == 0 |
|
|
312 |
except AttributeError: |
|
|
313 |
return error_return() |
|
|
314 |
|
|
|
315 |
if roi_x_min == -1 and roi_x_max == -1 and roi_y_min == -1 and roi_y_max == -1: |
|
|
316 |
roi = find_roi(filepath) |
|
|
317 |
else: |
|
|
318 |
roi = Rectangle(roi_x_min, roi_y_min, roi_x_max-roi_x_min, roi_y_max-roi_y_min) |
|
|
319 |
|
|
|
320 |
|
|
|
321 |
img = cv.imread(filepath) |
|
|
322 |
height, width, channels = img.shape |
|
|
323 |
imgray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) |
|
|
324 |
|
|
|
325 |
filter_img = cv.medianBlur(imgray,filter_size) |
|
|
326 |
# filter_img = cv.GaussianBlur(imgray,(filter_size,filter_size),0) |
|
|
327 |
# filter_img = cv.bilateralFilter(imgray, 10, 10, 10) |
|
|
328 |
|
|
|
329 |
edges = cv.Canny(filter_img, canny_min, canny_max) |
|
|
330 |
cv.imwrite("edges.png", edges) |
|
|
331 |
|
|
|
332 |
try: |
|
|
333 |
img_to_dilate = edges[roi.y:roi.y+roi.h, roi.x:roi.x+roi.w] |
|
|
334 |
except IndexError: |
|
|
335 |
return error_return() |
|
|
336 |
|
|
|
337 |
kernel = np.ones((dilation_kernel_size, dilation_kernel_size), np.uint8) |
|
|
338 |
|
|
|
339 |
img_to_dilate = cv.dilate(img_to_dilate, kernel, iterations=dilation_it) |
|
|
340 |
edges[roi.y:roi.y+roi.h,roi.x:roi.x+roi.w] = cv.morphologyEx(img_to_dilate, cv.MORPH_CLOSE, kernel) |
|
|
341 |
dilation = cv.morphologyEx(edges, cv.MORPH_ERODE, kernel) |
|
|
342 |
|
|
|
343 |
contours, hierarchy = cv.findContours(dilation, cv.RETR_TREE, cv.CHAIN_APPROX_NONE) |
|
|
344 |
number_of_recs=0 |
|
|
345 |
all_recs = [] |
|
|
346 |
for i in range(len(contours)): |
|
|
347 |
x, y, w, h = cv.boundingRect(contours[i]) |
|
|
348 |
rec = Rectangle(x, y, w, h) |
|
|
349 |
if is_inside_joint(rec, roi): |
|
|
350 |
cv.drawContours(img, contours, i, (0, 0, 255), 1) |
|
|
351 |
all_recs.append(rec) |
|
|
352 |
number_of_recs += 1 |
|
|
353 |
|
|
|
354 |
if len(all_recs) == 0: |
|
|
355 |
return error_return() |
|
|
356 |
|
|
|
357 |
cv.imwrite("contours.png",img) |
|
|
358 |
filtered_recs = discard_irrelevant_results(all_recs) |
|
|
359 |
corrected_recs = filtered_recs |
|
|
360 |
if len(corrected_recs) == 0: |
|
|
361 |
return error_return() |
|
|
362 |
|
|
|
363 |
# corrected_recs = [] |
|
|
364 |
# for rec in filtered_recs: |
|
|
365 |
# corrected_recs.append(check_histograms(img, rec, roi)) |
|
|
366 |
|
|
|
367 |
x_max = 0; y_max = 0; w_max = 0; h_max = 0 |
|
|
368 |
for rec in corrected_recs: |
|
|
369 |
cv.rectangle(img, (rec.x, rec.y), (rec.x + rec.w, rec.y + rec.h), (0, 255, 0), 1) |
|
|
370 |
if rec.w * rec.h > w_max * h_max: |
|
|
371 |
x_max = rec.x |
|
|
372 |
y_max = rec.y |
|
|
373 |
w_max = rec.w |
|
|
374 |
h_max = rec.h |
|
|
375 |
|
|
|
376 |
images = [imgray, filter_img, edges, dilation, img] |
|
|
377 |
filepath_inspected = filepath.replace(".png", "_inspected.png") |
|
|
378 |
cv.imwrite(filepath_inspected, img) |
|
|
379 |
|
|
|
380 |
x_max, y_max, w_max, h_max, all_recs_in_mm = convert_to_mm(roi, thickness, corrected_recs) |
|
|
381 |
acceptance = confirm_indications(all_recs_in_mm, acceptance_level, thickness) |
|
|
382 |
|
|
|
383 |
with open(Path(filepath).stem+"_results_in_pixels.txt", "w") as f: |
|
|
384 |
i = 0 |
|
|
385 |
for rec in all_recs: |
|
|
386 |
|
|
|
387 |
f.write("Pattern " + str(i) + ": x0 = " + str(rec.x) + "; y0 = " + str(rec.y) + "; w = " + |
|
|
388 |
str(rec.w) + "; h = " + str(rec.h) + "\n") |
|
|
389 |
i += 1 |
|
|
390 |
|
|
|
391 |
return acceptance, x_max, y_max, w_max, h_max, filepath_inspected, images |
|
|
392 |
|
|
|
393 |
|
|
|
394 |
#throwMe = [9, 20, 77, 3, 3, -1, -1, -1, -1] |
|
|
395 |
#acc, x_max, y_max, w_max, h_max, filepath_inspected, images = inspect("images\\test1.png", throwMe, 3, 12) |
|
|
396 |
#cv.imshow("result", images[0]) |
|
|
397 |
#cv.waitKey() |
|
|
398 |
#cv.destroyAllWindows() |
|
|
399 |
|
|
|
400 |
# pierwsza strona do podpisu, reszta mailem, prezka w grudniu mailem i przyjść przegadać |
|
|
401 |
# |