|
a |
|
b/setup.py |
|
|
1 |
from setuptools import setup, find_packages |
|
|
2 |
|
|
|
3 |
with open("README.md", "r", encoding="utf-8") as fh: |
|
|
4 |
long_description = fh.read() |
|
|
5 |
|
|
|
6 |
classifiers = [ |
|
|
7 |
'Intended Audience :: Developers', |
|
|
8 |
'Programming Language :: Python :: 3.7', |
|
|
9 |
'License :: OSI Approved :: MIT License', |
|
|
10 |
"Operating System :: OS Independent" |
|
|
11 |
] |
|
|
12 |
|
|
|
13 |
setup( |
|
|
14 |
name='tigerbx', |
|
|
15 |
|
|
|
16 |
version='0.1.18', |
|
|
17 |
description='Processing MRI images based on deep-learning', |
|
|
18 |
long_description_content_type='text/markdown', |
|
|
19 |
url='https://github.com/htylab/tigerbx', |
|
|
20 |
|
|
|
21 |
author='Biomedical Imaging Lab, Taiwan Tech', |
|
|
22 |
author_email='', |
|
|
23 |
License='MIT', |
|
|
24 |
classifiers=classifiers, |
|
|
25 |
|
|
|
26 |
keywords='MRI brain segmentation', |
|
|
27 |
packages=find_packages(), |
|
|
28 |
package_data={ |
|
|
29 |
'tigerbx': ['template/*.nii.gz'], # include the MNI152 template |
|
|
30 |
}, |
|
|
31 |
include_package_data=True, |
|
|
32 |
|
|
|
33 |
entry_points={ |
|
|
34 |
'console_scripts': [ |
|
|
35 |
'tigerbx = tigerbx.bx:main', |
|
|
36 |
|
|
|
37 |
] |
|
|
38 |
}, |
|
|
39 |
python_requires='>=3.7', |
|
|
40 |
install_requires=[ |
|
|
41 |
'numpy>=1.21.6,<2.0', |
|
|
42 |
'nilearn>=0.9.2', |
|
|
43 |
'optuna', |
|
|
44 |
] |
|
|
45 |
) |