import itertools
import logging
import os
import re
import shutil
from textwrap import wrap
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import torch
from tensorboardX import SummaryWriter
import utils.evaluator as eu
plt.switch_backend('agg')
plt.axis('scaled')
# TODO: Add custom phase names
class LogWriter(object):
def __init__(self, num_class, log_dir_name, exp_name, use_last_checkpoint=False, labels=None,
cm_cmap=plt.cm.Blues):
self.num_class = num_class
train_log_path, val_log_path = os.path.join(log_dir_name, exp_name, "train"), os.path.join(log_dir_name,
exp_name,
"val")
if not use_last_checkpoint:
if os.path.exists(train_log_path):
shutil.rmtree(train_log_path)
if os.path.exists(val_log_path):
shutil.rmtree(val_log_path)
self.writer = {
'train': SummaryWriter(train_log_path),
'val': SummaryWriter(val_log_path)
}
self.curr_iter = 1
self.cm_cmap = cm_cmap
self.labels = self.beautify_labels(labels)
self.logger = logging.getLogger()
file_handler = logging.FileHandler("{0}/{1}.log".format(os.path.join(log_dir_name, exp_name), "console_logs"))
self.logger.addHandler(file_handler)
def log(self, text, phase='train'):
self.logger.info(text)
def loss_per_iter(self, loss_value, i_batch, current_iteration):
print('[Iteration : ' + str(i_batch) + '] Loss -> ' + str(loss_value))
self.writer['train'].add_scalar('loss/per_iteration', loss_value, current_iteration)
def loss_per_epoch(self, loss_arr, phase, epoch):
if phase == 'train':
loss = loss_arr[-1]
else:
loss = np.mean(loss_arr)
self.writer[phase].add_scalar('loss/per_epoch', loss, epoch)
print('epoch ' + phase + ' loss = ' + str(loss))
def cm_per_epoch(self, phase, output, correct_labels, epoch):
print("Confusion Matrix...", end='', flush=True)
_, cm = eu.dice_confusion_matrix(output, correct_labels, self.num_class, mode=phase)
self.plot_cm('confusion_matrix', phase, cm, epoch)
print("DONE", flush=True)
def plot_cm(self, caption, phase, cm, step=None):
fig = matplotlib.figure.Figure(figsize=(8, 8), dpi=180, facecolor='w', edgecolor='k')
ax = fig.add_subplot(1, 1, 1)
ax.imshow(cm, interpolation='nearest', cmap=self.cm_cmap)
ax.set_xlabel('Predicted', fontsize=7)
ax.set_xticks(np.arange(self.num_class))
c = ax.set_xticklabels(self.labels, fontsize=4, rotation=-90, ha='center')
ax.xaxis.set_label_position('bottom')
ax.xaxis.tick_bottom()
ax.set_ylabel('True Label', fontsize=7)
ax.set_yticks(np.arange(self.num_class))
ax.set_yticklabels(self.labels, fontsize=4, va='center')
ax.yaxis.set_label_position('left')
ax.yaxis.tick_left()
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
ax.text(j, i, format(cm[i, j], '.2f') if cm[i, j] != 0 else '.', horizontalalignment="center", fontsize=6,
verticalalignment='center', color="white" if cm[i, j] > thresh else "black")
fig.set_tight_layout(True)
np.set_printoptions(precision=2)
if step:
self.writer[phase].add_figure(caption + '/' + phase, fig, step)
else:
self.writer[phase].add_figure(caption + '/' + phase, fig)
def dice_score_per_epoch(self, phase, output, correct_labels, epoch):
print("Dice Score...", end='', flush=True)
ds = eu.dice_score_perclass(output, correct_labels, self.num_class, mode=phase)
self.plot_dice_score(phase, 'dice_score_per_epoch', ds, 'Dice Score', epoch)
ds_mean = torch.mean(ds)
print("DONE", flush=True)
return ds_mean.item()
def plot_dice_score(self, phase, caption, ds, title, step=None):
fig = matplotlib.figure.Figure(figsize=(8, 6), dpi=180, facecolor='w', edgecolor='k')
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel(title, fontsize=10)
ax.xaxis.set_label_position('top')
ax.bar(np.arange(self.num_class), ds)
ax.set_xticks(np.arange(self.num_class))
c = ax.set_xticklabels(self.labels, fontsize=6, rotation=-90, ha='center')
ax.xaxis.tick_bottom()
if step:
self.writer[phase].add_figure(caption + '/' + phase, fig, step)
else:
self.writer[phase].add_figure(caption + '/' + phase, fig)
def plot_eval_box_plot(self, caption, class_dist, title):
fig = matplotlib.figure.Figure(figsize=(8, 6), dpi=180, facecolor='w', edgecolor='k')
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel(title, fontsize=10)
ax.xaxis.set_label_position('top')
ax.boxplot(class_dist)
ax.set_xticks(np.arange(self.num_class))
c = ax.set_xticklabels(self.labels, fontsize=6, rotation=-90, ha='center')
ax.xaxis.tick_bottom()
self.writer['val'].add_figure(caption, fig)
def image_per_epoch(self, prediction, ground_truth, phase, epoch):
print("Sample Images...", end='', flush=True)
ncols = 2
nrows = len(prediction)
fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(10, 20))
for i in range(nrows):
ax[i][0].imshow(prediction[i], cmap='CMRmap', vmin=0, vmax=self.num_class - 1)
ax[i][0].set_title("Predicted", fontsize=10, color="blue")
ax[i][0].axis('off')
ax[i][1].imshow(ground_truth[i], cmap='CMRmap', vmin=0, vmax=self.num_class - 1)
ax[i][1].set_title("Ground Truth", fontsize=10, color="blue")
ax[i][1].axis('off')
fig.set_tight_layout(True)
self.writer[phase].add_figure('sample_prediction/' + phase, fig, epoch)
print('DONE', flush=True)
def graph(self, model, X):
self.writer['train'].add_graph(model, X)
def close(self):
self.writer['train'].close()
self.writer['val'].close()
def beautify_labels(self, labels):
classes = [re.sub(r'([a-z](?=[A-Z])|[A-Z](?=[A-Z][a-z]))', r'\1 ', x) for x in labels]
classes = ['\n'.join(wrap(l, 40)) for l in classes]
return classes