# From https://gist.github.com/apaszke/01aae7a0494c55af6242f06fad1f8b70
from graphviz import Digraph
import torch
from torch.autograd import Variable
import sys
sys.path.append('../deeplab_3D/')
sys.path.append('../unet_3D/')
sys.path.append('../vnet_3D/')
sys.path.append('../hrnet_3D/')
sys.path.append('../new_nets_3D/')
import deeplab_resnet_3D
import unet_3D
import vnet_3D
import highresnet_3D
import highresnet_x_deeplab_3D
def make_dot(var, params):
""" Produces Graphviz representation of PyTorch autograd graph
Blue nodes are the Variables that require grad, orange are Tensors
saved for backward in torch.autograd.Function
Args:
var: output Variable
params: dict of (name, Variable) to add names to node that
require grad (TODO: make optional)
"""
param_map = {id(v): k for k, v in params.items()}
print(param_map)
node_attr = dict(style='filled',
shape='box',
align='left',
fontsize='12',
ranksep='0.1',
height='0.2')
dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12"))
seen = set()
def size_to_str(size):
return '('+(', ').join(['%d'% v for v in size])+')'
def add_nodes(var):
if var not in seen:
if torch.is_tensor(var):
dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange')
elif hasattr(var, 'variable'):
u = var.variable
node_name = '%s\n %s' % (param_map.get(id(u)), size_to_str(u.size()))
dot.node(str(id(var)), node_name, fillcolor='lightblue')
else:
dot.node(str(id(var)), str(type(var).__name__))
seen.add(var)
if hasattr(var, 'next_functions'):
for u in var.next_functions:
if u[0] is not None:
dot.edge(str(id(u[0])), str(id(var)))
add_nodes(u[0])
if hasattr(var, 'saved_tensors'):
for t in var.saved_tensors:
dot.edge(str(id(t)), str(id(var)))
add_nodes(t)
add_nodes(var.grad_fn)
return dot
inputs = torch.randn(1,1,80,80,80)
#model = deeplab_resnet_3D.Res_Deeplab(3)
#model = unet_3D.UNet3D(1, 3)
model = highresnet_x_deeplab_3D.getNewNet(2)
#model = highresnet_3D.HighResNet(3)
y = model(Variable(inputs))
g = make_dot(y, model.state_dict())
g.view()